
686-631

Science Algorithm Specification
for

SeaWinds on QuikSCAT
and

SeaWinds on ADEOS-II

R. Scott Dunbar
S. Vincent Hsiao
Young-Joon Kim

Kyung S. Pak
Barry H. Weiss
Angela Zhang

Jet Propulsion Laboratory JPL D-21978
4800 Oak Grove Drive
Pasadena, California 91109 October 5, 2001

Science Algorithm Specification
For

SeaWinds on QuikSCAT
and

SeaWinds on ADEOS-II
686-631

Science Algorithm Manager: Philip S. Callahan

Document Editor: R. Scott Dunbar

Science Algorithm Authors: R. Scott Dunbar
Vincent Hsiao
Young-Joon Kim
Kyung S. Pak
Barry H. Weiss
Angela Zhang

JPL D-21978

JPL
Jet Propulsion Laboratory
California Institute of Technology

Ver.3.0 10/5/01 i

Table of Contents

Preface .. v

SeaWinds/QuikSCAT Algorithm Heritage Table... vi

SeaWinds Spacecraft Location and Nadir Location Algorithm ... 2

L1A.1.1.1/L1B.1.1.1 Initialize_Ephemeris .. 4
L1A.1.1.2/L1B.1.1.2 Read_Ephemeris .. 7
L1A.1.1.3/L1B.1.1.3 Spline ... 10
L1A.1.2.1/L1B.1.2.1 Interpolate_Ephemeris ... 12
L1B.1.2.2 Spline Interpolator.. 15
L1B.1.3.1 Nadir... 17

SeaWinds Geometry Algorithms ... 22

L1B.2.2.1 Compute_Local_Coord ... 28
L1B.2.2.2 Compute_Attitude_Rotatn_Matrix ... 30
L1B.2.2.3 Convert_SC_To_Local.. 32
L1B.2.2.4 Convert_Between_Rect_Local.. 34
L1B.2.2.5 Convert_Rect_To_Geo.. 36
L1B.2.2.6 Compute_Geodetic_Lat... 37
L1B.2.3.1 Compute_Max_Gain_Dir.. 38
L1B.2.3.3 Determine_Measurement_Time.. 39
L1B.2.4.1 Locate_Cell_On_Earth.. 42
L1B.2.4.2 Compute_Incidence_Angle ... 44
L1B.2.4.4 Compute_Cell_Azimuth_Angle.. 46
L1B.2.4.5 Doppler_Shift_Range_Track... 48
L1B.2.4.6 Compute_X_Loc ... 52
L1B.2.4.7 Select_Best_Eight_Slices.. 56
L1B.2.4.8 Locate_Freq_Lines ... 58
L1B.2.4.9 Locate_Peak_Gain.. 61

SeaWinds Sigma0 and Kp Algorithm.. 64

L1B.3.1.1 Process_Calibration_Data .. 71
L1B.3.2.1 Compute_Sigma0_and_Kp .. 75
L1B.3.3.1 Get_Cal_Data ... 79
L1B.3.3.2 Est_Calibration_X... 82
L1B.3.4.1 Calculate_Pr_Pt_Ratio .. 87
L1B.3.4.2 Est_Noise_Energy ... 90
L1B.3.4.3 Est_Signal_Energy .. 94
L1B.3.4.4 Est_SNR.. 96

Ver.3.0 10/5/01 ii

L1B.3.4.5 Est_Pr_Pt_Ratio .. 99
L1B.3.5.1 Calculate_X_Factor... 102
L1B.3.5.2 Calculate_Sigma0.. 109
L1B.3.5.3 Calculate_Kpc_Coeff .. 113

SeaWinds Scatterometer Brightness Temperature Algorithm ... 120

L1B.4.1.1 Calculate_Tb_Parameters.. 123
L1B.4.1.2 Calculate_Brightness_Temperature .. 127

Track Echo Signal ... 132

L1B.5.1.1 Track_Echo_Signal .. 136
L1B.5.2.0 Manage_Echo_Track_Frames.. 141
L1B.5.2.1 Initialize_Echo_Track .. 144
L1B.5.2.2 Track_Frame_Times .. 145
L1B.5.3.0 Acquire_Echo_Track_Matrix... 146
L1B.5.3.1 Ascertain_Beam_Parameters.. 150
L1B.5.3.2 Determine_Echo_Track_Params.. 152
L1B.5.4.0 Calculate_Echo_Track_Attitude .. 154
L1B.5.4.1 Determine_Singularity ... 158

SeaWinds Scatterometer Calibration Smoothing Algorithm.. 161

L1B.6.1.1 Initialize_Cal_Pulse ... 163
L1B.6.1.2 Process_Calibration_Data .. 170
L1B.6.1.3 Get_Cal_Data ... 180

Level 2A /Level 2B ALGORITHMS

Grouping Sigma0 and Calculating Sigma0 Variances... 184

L2A.1.1.1 Regroup_Sigma0... 188
L2A.1.2.1 Compute_Orbit_Element .. 192
L2A.1.3.1 Sub-track Binning ... 195
L2A.1.3.2 Bin_Sigma0_Parameters ... 200
L2A.1.4.1 Estimate_Sigma0_Variance .. 203
L2A.1.5.1 Collect_Brightness_Temps ... 206
L2A.2.1.1 Determine_Composites... 209
L2A.2.1.2 Determine_Slice_Quality.. 211
L2A.2.1.3 Get_Composite_Usability ... 213
L2A.2.1.4 Composite_Slices.. 215
L2A.2.1.5 Composite_Sigma0_Parameters_Sig .. 218
L2A.2.2.1 Calculate_Tb_Statistics... 221

Ver.3.0 10/5/01 iii

L2A.3.1.1 Flag_By_Mask .. 223
L2A.3.1.2 Flag_Read_Map .. 225

SeaWinds Sigma0 Grouping Algorithm.. 228

L2B.1.1.1 Execute_Wind_Algorithms... 232
L2B.1.2.1 Prepare_WVC ... 236
L2B.1.2.2 Filter_WVC... 240
L2B.1.2.3 Calculate_WVC_Centroid .. 243
L2B.1.2.4 Calculate_WVC_Brightness_Temp .. 245
L2B.1.2.5 Set_Wind_Flags .. 247

SeaWinds Wind Retrieval Algorithm.. 252

L2B.2.1.1 Retrieve_Winds... 256
L2B.2.1.2 Calculate_Initial_WVC_Solution ... 260
L2B.2.1.3 Optimize_Wind_Solutions.. 265
L2B.2.1.4 Rank_Wind_Solutions .. 273
L2B.2.2.1 Evaluate_Objective_Function ... 277
L2B.2.2.2 Run_Model_Function.. 281
L2B.2.2.3 Initialize_Model_Function .. 284
L2B.2.2.4 Initialize_Interpolation_Coefficients... 286
L2B.2.2.5 Initialize_Working_Table ... 288
L2B.2.2.6 Evaluate_Model_Function .. 290

SeaWinds Rain Flag Algorithm ... 296

L2B.3.1.1 Determine Rain Flag ... 299
L2B.3.1.2 Calculate Normalized Objective Function Rain Index.................................. 309
L2B.3.1.3 Calculate Transmittance.. 315
L2B.3.2.1 Filter_Rain_Flag_Spatially ... 319

SeaWinds Ambiguity Removal Algorithm.. 323

L2B.4.1.1 Execute_Ambiguity_Removal .. 328
L2B.4.1.2.1 Select_Ambiguity... 330
L2B.4.1.2.2 Select_Nudge ... 332
L2B.4.1.2.3 Determine_NWP_Nudge ... 334
L2B.4.1.3 Initialize_Working_Arrays.. 336
L2B.4.1.4 Calculate_Median_Filter ... 338
L2B.4.1.5 Replace_Ambiguity_Buffers... 343

Multi-Pass Ambiguity Removal for Reducing Rain Effects.. 346

L2B.4.1.1 Execute_Ambiguity_Removal (multi-pass) ... 348
L2B.4.1.3 Initialize_Working_Arrays (multi-pass) .. 351

Ver.3.0 10/5/01 iv

Direction-Interval Retrieval with Thresholded Nudging .. 355

L2B.5.1.1 Convert Objective Function to PDF.. 359
L2B.5.1.2 Build_Dir_Ranges... 363
L2B.5.1.3 Correct_Selected_Vectors ... 366
L2B.5.1.4 DIR_Median_Filter ... 369
L2B.5.2.1 Thresholded Nudging.. 372
L2B.2.1.1 Retrieve_Winds (DIRTH) ... 375
L2B.2.1.2 Calculate_Initial_WVC_Solution (DIRTH).. 380

Ver. 3.0 10/05/01 v

Preface

The Science Algorithm Specifications for SeaWinds on QuikSCAT and SeaWinds on ADEOS-II is
a document describing the science data processing algorithms developed for the NASA’s
SeaWinds instrument from September 1997 through June 2001. Its contents are divided into four
levels: Spacecraft geometry (L1A), cell geometry and sigma0 (L1B), regrouping sigma0 (L2A),
and wind retrieval and ambiguity removal (L2B). Within each level there can be several
algorithm modules. A module usually contains several lower-level algorithms that are related by
the function performed. Each individual algorithm is called a subroutine and its description
includes the formulation, processing steps, input/output data, and algorithm heritage.

The SeaWinds on QuikSCAT mission was launched on June 19, 1999 and has operated
continuously to date. The SeaWinds on ADEOS II mission is due to launch in the early 2002.

Ver. 3.0 10/05/01 vi

SeaWinds/QuikSCAT Algorithm Heritage Table

N = New MQ = Modified for QuikSCAT MS = Modified for SeaWinds

Algorithm ID Algorithm Short (ATB) Name QS
launch

QS
CalVal

SWS
launch

Comments

Level 1A/1B Algorithms

L1AB.1.1.1 Initialize_Ephemeris N Used in L1A and L1B proc.
L1AB.1.1.2 Read_Ephemeris N Used in L1A and L1B proc.
L1AB.1.1.3 Spline N Used in L1A and L1B proc.
L1AB.1.2.1 Interpolate_Ephemeris N Used in L1A and L1B proc.
L1AB.1.2.2 SplInt N Used in L1A and L1B proc.
L1AB.1.3.1 Nadir N Used in L1A and L1B proc.

Level 1B Algorithms

L1B.2.2.1 Compute_Local_Coord N
L1B.2.2.2 Compute_Attitude_Rtn_Matrix N
L1B.2.2.3 Convert_SC_To_Local N
L1B.2.2.4 Convert_Between_Rect_Local N
L1B.2.2.5 Convert_Rect_To_Geo N
L1B.2.2.6 Compute_Geodetic_Lat N
L1B.2.3.1 Compute_Max_Gain_Dir N
L1B.2.3.3 Determine_Measurement_Time N
L1B.2.4.1 Locate_Cell_On_Earth N
L1B.2.4.2 Compute_Incidence_Angle N
L1B.2.4.4 Compute_Cell_Azimuth_

Angle
N

L1B.2.4.5 Doppler_Shift_Range_Track N
L1B.2.4.6 Compute_X_Loc N MS
L1B.2.4.7 Select_Best_Eight_Slices N
L1B.2.4.8 Locate_Freq_Lines N MS
L1B.2.4.9 Locate_Peak_Gain N MS
L1B.3.1.1 Process_Calibration_Data N
L1B.3.2.1 Compute_Sigma0_and_Kp N
L1B.3.3.1 Get_Cal_Data N
L1B.3.3.2 Est_Calibration_X N
L1B.3.4.1 Calculate_Pr_Pt_Ratio N
L1B.3.4.2 Est_Noise_Energy N
L1B.3.4.3 Est_Signal_Energy N
L1B.3.4.4 Est_SNR N
L1B.3.4.5 Est_Pr_Pt_Ratio N
L1B.3.5.1 Calculate_X_Factor N
L1B.3.5.2 Calculate_Sigma0 N
L1B.3.5.3 Calculate_Kpc_Coeff N
L1B.4.1.1 Calculate_Tb_Parameters N

Ver. 3.0 10/05/01 vii

L1B.4.1.2 Calculate_Brightness_Temp N
L1B.5.1.1 Track_Echo_Signal N
L1B.5.2.0 Manage_Echo_Track_Frames N
L1B.5.2.1 Initialize_Echo_Track N
L1B.5.2.2 Track_Frame_Times N
L1B.5.3.0 Acquire_Echo_Track_Matrix N
L1B.5.3.1 Ascertain_Beam_Parameters N
L1B.5.3.2 Determine_Echo_Track_Params N
L1B.5.4.0 Calculate_Echo_Track_

Attitude
N

L1B.5.4.1 Determine_Singularity N
L1B.6.1.1 Initialize_Cal_Pulses N
L1B.6.1.2 Process_Calibration_Data N
L1B.6.1.3 Get_Cal_Data N

Level 2A Algorithms

L2A.1.1.1 Regroup_Sigma0 N
L2A.1.2.1 Compute_Orbit_Elements N
L2A.1.3.1 Sub-track_Binning N
L2A.1.3.2 Bin_Sigma0_Parameters N
L2A.1.4.1 Estimate_Sigma0_Variance N
L2A.1.5.1 Collect_Brightness_Temps N
L2A.2.1.1 Determine_Composites N
L2A.2.1.2 Determine_Slice_Quality N
L2A.2.1.3 Get_Composite_Usability N
L2A.2.1.4 Composite_Slices N
L2A.2.1.5 Composite_Sigma0_

Parameters_Sig
N

L2A.2.2.1 Calculate_Tb_Statistics N
L2A.3.1.1 Flag_Read_Map N
L2A.3.1.2 Flag_By_Mask N

Level 2B Algorithms

L2B.1.1.1 Execute_Wind_Algorithms N
L2B.1.2.1 Prepare_WVC N
L2B.1.2.2 Filter_WVC N
L2B.1.2.3 Calculate_WVC_Centroid N
L2B.1.2.4 Calculate_WVC_

Brightness_Temp
N

L2B.1.2.5 Set_Winds_Flags N
L2B.2.1.1 Retrieve_Winds N
L2B.2.1.2 Calculate_Initial_WVC_

Solutions
N

L2B.2.1.3 Optimize_Wind_Solutions N
L2B.2.1.4 Rank_Wind_Solutions N
L2B.2.2.1 Evaluate_Objective_Function N
L2B.2.2.2 Run_Model_Function N
L2B.2.2.3 Initialize_Model_Function N

Ver. 3.0 10/05/01 viii

L2B.2.2.4 Initialize_Interpolation_
Coefficients

N

L2B.2.2.5 Initialize_Working_Table N
L2B.2.2.6 Evaluate_Model_Function N
L2B.3.1.1 Determine_Rain_Flag N
L2B.3.1.2 Calculate_NOF_Rain_Index N
L2B.3.1.3 Calculate_Transmittance N
L2B.3.2.1 Filter_Rain_Flag_Spatially N
L2B.4.1.1 Execute_Ambiguity_Removal N MS see Multi-pass version
L2B.4.1.2.1 Select_Ambiguity N
L2B.4.1.2.2 Select_Nudge N
L2B.4.1.2.3 Determine_NWP_Nudge N
L2B.4.1.3 Initialize_Working_Arrays N MS see Multi-pass version
L2B.4.1.4 Calculate_Median_Filter N
L2B.4.1.5 Replace_Ambiguity_Buffers N
L2B.4.1.1(MP) Execute_Ambiguity_Removal

(multi-pass)
N

L2B.4.1.3(MP) Initialize_Working_Arrays N
L2B.5.1.1 Convert_Objective_Function to

PDF
N

L2B.5.1.2 Build_Dir_Ranges N
L2B.5.1.3 Correct_Selected_Vectors N
L2B.5.1.4 DIR_Median_Filter N
L2B.5.2.1 Thresholded_Nudging N
L2B.2.1.1
(DIRTH)

Retrieve_Winds (DIRTH) N

L2B.2.1.2
(DIRTH)

Calculate_Initial_WVC_
Solution (DIRTH)

N

Version 3.0 10/5/01 1

SeaWinds Spacecraft Location and Nadir Location Algorithm

MODULE L1A.1.0
MODULE L1B.1.0

ALGORITHM SPECIFICATIONS

AUTHOR: R. Scott Dunbar
 VERSION: 2.0

DATE: October, 1999

Version 3.0 10/5/01 2

SeaWinds Spacecraft Location and Nadir Location Algorithm

I. Module Overview

In processing SeaWinds telemetry data frames to Level 1A, we are required to determine
the precise spacecraft state vector (position and velocity) at a given frame time. In addition, the
first step in locating SeaWinds pulse and slice footprints at Level 1B is to determine the precise
location and velocity of the spacecraft, and the Earth location of its nadir point, at a given pulse
time. The spacecraft ephemeris, which for QuikSCAT is obtained from the onboard GPS
processor and embedded in the science housekeeping (HK2) data, and for ADEOS-II is in the
Platform Correction Data (PCD) of the SeaWinds telemetry packets, is interpolated at the given
time to obtain the position and velocity data required for the L1A product. In the L1B algorithm
processing, the state vector data is passed to the SWS Geometry computations (L1B.2.0). This
algorithm module that performs these tasks is common to both the L1A and L1B processing.

The nominal rate of ephemeris data for SeaWinds depends on the source of the data. The
ADEOS-2 ELMD data is expected to provide state vectors at 1-minute intervals, and the
ADEOS-2 PCD data embedded in the telemetry will provide data at 8-second intervals. The
QuikSCAT GPS processor data in the HK2 is nominally at 2-second intervals. However, in the
latter case, the science and housekeeping data packet generation process in the spacecraft
onboard computer has a systematic timing problem in its FIFO buffer, the result of which is a
periodic loss of one or more HK2 packets. This means that we can no longer rely on an
ephemeris interpolator that depends on equally-spaced data, such as the previous NSCAT-
derived version of the interpolation algorithm.

Given the variety of possible inputs and the potential for non-uniform spacing of the data
in time, the revised ephemeris interpolation algorithm fits a cubic spline to each of the six state
coordinates (position and velocity vectors) of the spacecraft over the full time span of the data
being processed. The cubic spline was selected for its robustness, ability to handle small and
moderate-sized data gaps, and a further ability to compute an error estimate for each interpolation
that can be used to flag the data. This application of the spline algorithm to the SeaWinds
ephemeris interpolation problem was first proposed and described in [1].

Once the spacecraft position vector is known, the nadir location algorithm is used to
determine the geodetic coordinates of the spacecraft nadir and the altitude. This algorithm
assumes an ellipsoidal Earth, and so the computation of the geodetic latitude and the altitude is a
simultaneous, iterative solution for both quantities. This algorithm remains unchanged from the
original (V1.0).

The main outputs of this algorithm needed for subsequent processing are the spacecraft
position and velocity vectors (in the Earth-rotating Cartesian frame), the nadir latitude and
longitude, and the spacecraft altitude.

Version 3.0 10/5/01 3

Performance Requirements

The accuracy of the interpolation technique used mainly depends on the time interval
between ephemeris entries. Assuming an acceptable 1-axis positional error of 100 meters, a time
interval (or data gap) up to 200-300 seconds can be handled. Beyond a 300 second interval, the
oscillation of the spline interpolator near the edge of the data (or data gap) makes the ephemeris
accuracy unacceptable. Therefore it is necessary to buffer ephemeris data extending at least 5
minutes beyond the ends of the particular Level 0 (for the L1A processor) or L1A (for the L1B
processor) data being processed. However, since the QuikSCAT processing system already uses a
much larger span of ephemeris data for a given time range of scatterometer data (e.g. previous,
current, and next files), this should not incur problems.

Processing speed and accuracy were tested during the development of this algorithm
using a simulated one-rev Level 1A data file. Timing test results are given in [1].

II. Functional Flow Description

The processing for this algorithm is divided into an initialization stage, performed at the
beginning of the processing, and the actual interpolation stage, which is called as required by the
main level processor. In the L1B processing, these are followed by the nadir location algorithm.
These stages include the following functions:

(1.1) Initialization stage:

1.1.1 Initialize Ephemeris Interpolation
1.1.2 Read and Buffer Ephemeris Data
1.1.3 Compute Spline Coefficients

(1.2) Interpolation stage:

1.2.1 Interpolate State Vector
1.2.2 Compute Spline

(1.3) Nadir location (L1B only)

1.3.1 NADIR

REFERENCE

[1] Dunbar, R. S. (1998) An Alternative Ephemeris Interpolation Algorithm for QuikSCAT, JPL
IOM 3349-98-015, November 20, 1998.

Version 3.0 10/5/01 4

SeaWinds Algorithm Specification

TITLE: Initialize Ephemeris Interpolation
SUBMODULE: Initialize Ephemeris Interpolation
MODULE: SWS Spacecraft Location and Nadir Location
CODE: L1A.1.1.1/ L1B.1.1.1
VERSION: 2.0
DATE: February 22, 1999
AUTHOR: R. Scott Dunbar
SUBROUTINE: Initialize_Ephemeris.F
LANGUAGE: FORTRAN
HERITAGE:
__

L1A.1.1.1/L1B.1.1.1 Initialize_Ephemeris

PURPOSE

Controlling routine for the initialization of the ephemeris interpolation algorithm.

REQUIREMENTS

Control the setup of the cubic spline ephemeris interpolation using the ephemeris data in
the ephemeris buffer.

BACKGROUND

The cubic spline interpolator [1] is one of many alternative algorithms we could choose to
solve our ephemeris problem. The cubic spline algorithm uses an interpolation formula of the
form:

y = Ayj + Byj+1 + Cy” j + Dy” j+1

where

A = (xj+1 – x)/(xj+1 – xj)

B = 1 – A = (x – xj)/(xj+1 – xj)

C = (1/6) (A3 – A) (xj+1 – xj)
2

D = (1/6) (B3 – B) (xj+1 – xj)
2

The yj are the tabulated values of the function that are to be interpolated, and the second
derivatives y” j are computed by demanding that the formula should return the exact tabular

Version 3.0 10/5/01 5

values yj given x = xj, and that the first derivatives should be continuous. These constraints lead
to a tridiagonal system of equations that can be solved for the y” j in O(N) operations, where N is
the number of tabulated points being considered in the spline fit. There is no assumption in the
formulation of the cubic spline as to the regularity of the tabulated values – equal spacing is not
required. In fact, the spline is often used to produce an equally-spaced array for other
applications that require it, such as fast Fourier transforms.

In the present problem, we have six independent spline fits that are required, one for each
state vector coordinate (X, Y, Z, Vx, Vy, Vz)(t) in the ephemeris. The fits, consisting of
computing the y” j values to match the spline constraints, are done once for each ephemeris
coordinate after reading the ephemeris data (at the beginning of processing), and then the
interpolation equation is applied for each coordinate for any time inside the time span of the data.
 Note that the cubic spline is not a good extrapolator; significant oscill ation of the interpolated
values occur within about 4-5 time intervals of the ends of the fit, and much worse oscill ation
occurs outside the time span. However, since the QuikSCAT processing system already uses a
much larger span of ephemeris data for a given time range of scatterometer data (e.g. previous,
current, and next files), this should not incur problems.

INPUTS

neph_total I*4 Number of unique ephemeris data points (times) actually read from
the ephemeris file(s).

ephTime R*8 Array of [NPTS] times of ephemeris data, expressed in seconds
from January 1, 1993

xPos,yPos, R*8 Arrays of [NPTS] spacecraft position vector components, in
zPos meters
xVel,yVel, R*8 Arrays of [NPTS] spacecraft velocity vector components, in m/sec
zVel

OUTPUTS

Deriv R*8 Array of [NPTS,6] values of the second derivatives of the six
spline functions of the state vector components, computed at each
ephemeris data point.

PROCESSING

Step 1. It is assumed that the ephemeris data have been previously read into memory via module
1.1.2 (Read_Ephemeris).

Step 2. Call module 1.1.3 (Compute Spline Coeff icients) once for each state vector coordinate
(six times in all).

Step 3. Return to calling program (e.g. Level processor).

Version 3.0 10/5/01 6

AUXILIARY DATA

NPTS I*4 Maximum number of ephemeris data points (times) that can be
stored in a given run; sizes the arrays ephTime, xPos, yPos, zPos,
xVel, yVel, and zVel.

yp1, ypn R*8 “Flag” values for the first derivatives on the boundaries, setting the
“natural” cubic spline boundary conditions of y”1 = y”n = 0. Values
set to /1.d31/.

REFERENCES

[1] Press, Flannery, Teukolsky, Vetterling (1986) “Cubic Spline Interpolation” , Numerical
Recipes, section 3.3, pp. 86-89, Cambridge University Press, 1986.

Version 3.0 10/5/01 7

SeaWinds Algorithm Specification

TITLE: Read and Buffer Ephemeris Data
SUBMODULE: Initialize Ephemeris Interpolation
MODULE: SWS Spacecraft Location and Nadir Location
CODE: L1A.1.1.2/ L1B.1.1.2
VERSION: 2.0
DATE: February 22, 1999
AUTHOR: R. Scott Dunbar
SUBROUTINE: Read_Ephemeris.F
LANGUAGE: FORTRAN
HERITAGE:
__

L1A.1.1.2/L1B.1.1.2 Read_Ephemeris

PURPOSE

Read ephemeris times and state vectors from a specified set of files, creating a buffer of
unique ephemeris data points for use in the ephemeris interpolation algorithm.

REQUIREMENTS

Times of ephemeris entries must be unique. Overlapping data between data files must be
treated such that only one set of data from the overlap remains in the buffer.

BACKGROUND

The ephemeris data file contains the set of spacecraft state vectors (position and velocity
in Earth-rotating cartesian coordinates) and their associated times (in seconds from 0 UTC,
January 1, 1993), as generated by the onboard GPS processor (for QuikSCAT) or from ground-
based orbit propagation (QuikSCAT backup and ADEOS-2). For QuikSCAT the files are
created from the science housekeeping (HK2) telemetry by the SeaPAC HK2 preprocessor. The
format and content of the files is given in the Ephemeris Data file SIS [1]. The same format and
content will be maintained for the ephemeris data regardless of the data source (only the
filenames and header metadata will be different).

INPUTS

Ephfiles STRING Array of [NFILES] ephemeris file names from which the
ephemeris data are to be read into the buffer. The sequence
of files is assumed to be in time-order.

Version 3.0 10/5/01 8

OUTPUTS

neph_total I*4 Number of unique ephemeris data points (times) actually read from
the ephemeris file(s).

ephTime R*8 Array of [NPTS] times of ephemeris data, expressed in seconds
from January 1, 1993

xPos,yPos, R*8 Arrays of [NPTS] spacecraft position vector components, in
zPos meters
xVel,yVel, R*8 Arrays of [NPTS] spacecraft velocity vector components, in m/sec
zVel

PROCESSING

Step 1. Initialize the value of the variable LAST_TIME to 0.d0.

For each file in the list of filenames:

Step 2. Open the file and determine the number of data records in the file from the header
metadata.

Step 3. Read each data record sequentially.

Step 4. Compare the value of the ephemeris time in the data record to the value of
LAST_TIME; if the ephemeris time is greater, increment NEPH_TOTAL, and copy
the time and state vector component values to the buffer arrays; if the ephemeris time
is less than or equal to LAST_TIME, go back to step 3 and read another record
without storing the current record in the buffer.

After all of the files in the list have been read, return the value of NEPH_TOTAL and the buffer
arrays ephTime, xPos, yPos, zPos, xVel, yVel, and zVel to the calling program.

AUXILIARY DATA

NPTS I*4 Maximum number of ephemeris data points (times) that can be
stored in a given run; sizes the arrays ephTime, xPos, yPos, zPos,
xVel, yVel, and zVel.

INTERNAL VARIABLES

Last_time R*8 Time read for the previous ephemeris data point.

COMMENTS

It is optional whether one adopts the “ first data is best” which is described here, or a “last
data is best” philosophy when implementing the overlap elimination, so long as the uniqueness

Version 3.0 10/5/01 9

requirement is satisfied.

REFERENCES

[1] Merida, Sofia (1998). System Interface Specifications for SeaWinds Ephemeris Data,
JPL document 686-xxx.

Version 3.0 10/5/01 10

SeaWinds Algorithm Specification

TITLE: Compute Spline Coefficients
SUBMODULE: Initialize Ephemeris Interpolation
MODULE: SWS Spacecraft Location and Nadir Location
CODE: L1A.1.1.3/L1B.1.1.3
VERSION: 2.0
DATE: February 22, 1999
AUTHOR: R. Scott Dunbar
SUBROUTINE: SPLINE.F
LANGUAGE: FORTRAN
HERITAGE: Numerical Recipes
__

L1A.1.1.3/L1B.1.1.3 Spline

PURPOSE

Compute the second derivatives y” (i) of the cubic spline interpolating function y = y(x)
for a given set of N data points (x,y)i (i = 1,N).

BACKGROUND

The cubic spline interpolator [1] is applicable to unevenly-spaced data, such as that which
we expect in the QuikSCAT ephemeris. The algorithm used here is taken from Numerical
Recipes, and has been only slightly modified from the original to handle double precision data
arrays. This algorithm embeds the tridiagonal solution for the second derivative values directly
into the code. The second derivatives of y at the data points are required for the later
interpolation step (1.2.2).

INPUTS

N I*4 Number of data points in the X and Y arrays
X R*8 Array of abscissae (times), max dimension NMAX ≥ N
Y R*8 Array of ordinates (state coordinates) , max dimension NMAX ≥ N
YP1, R*8 Boundary values of the first derivatives; values are set to 1.d31
YPN to specify a natural cubic spline

OUTPUTS

Y2 R*8 Array of computed second derivatives, max dimension NMAX ≥ N

Version 3.0 10/5/01 11

PROCESSING

Step 1. For natural cubic spline (YP1 > .99d30), set the boundary values

Y2(1)=0 and U(1)=0.

Step 2. For points I=2 to N-1 compute the following:

 SIG = (X(I) - X(I-1))/(X(I+1) - X(I-1))
 P = SIG*Y2(I-1) + 2.
 Y2(I) = (SIG - 1.)/P
 U(I) = (6.*((Y(I+1) - Y(I))/(X(I+1) - X(I)) - (Y(I) - Y(I-1)) / (X(I) - X(I-1))) / (X(I+1) –

X(I-1)) - SIG*U(I-1))/P

Step 3. For natural cubic spline (YPN > .99d30), set the boundary value Y2(N) = 0.

Step 4. Compute the final Y2 array elements using the recursion:

Y2(I) = Y2(I)*Y2(I+1) + U(I) for I=N-1,1,-1

Step 5. Return the array Y2 to the calling routine.

INTERNAL VARIABLES

U R*8 Auxiliary function array used in the Y2 computations,
max dimension NMAX ≥ N

SIG R*8 Temporary variable used in the tridiagonal solution for Y2(I)
P R*8 Temporary variable used in the tridiagonal solution for Y2(I)

REFERENCE

[1] Press, Flannery, Teukolsky, Vetterling (1986) “Cubic Spline Interpolation” , Numerical
Recipes, section 3.3, pp. 86-89, Cambridge University Press, 1986.

Version 3.0 10/5/01 12

SeaWinds Algorithm Specification

TITLE: Interpolate State Vector
SUBMODULE: Ephemeris Interpolation
MODULE: SWS Spacecraft Location and Nadir Location
CODE: L1A.1.2.1/L1B.1.2.1
VERSION: 2.0
DATE: February 22, 1999
AUTHOR: R. Scott Dunbar
SUBROUTINE: Interpolate_Ephemeris.F
LANGUAGE: FORTRAN
HERITAGE:
__

L1A.1.2.1/L1B.1.2.1 Interpolate_Ephemeris

PURPOSE

Controlling routine for interpolation of the ephemeris for any given time in the time range
of the data.

BACKGROUND

In the present problem, we have six independent spline fits that are required, one for each
state vector coordinate (X, Y, Z, Vx, Vy, Vz)(t) in the ephemeris. The fits, consisting of
computing the y” j values to match the spline constraints, are done once for each ephemeris
coordinate after reading the ephemeris data (at the beginning of processing), and then the
interpolation equation is applied for each coordinate for any time inside the time span of the data.
 Note that the cubic spline is not a good extrapolator; significant oscillation of the interpolated
values occur within about 4-5 time intervals of the ends of the fit, and much worse oscillation
occurs outside the time span. However, since the QuikSCAT processing system already uses a
much larger span of ephemeris data for a given time range of scatterometer data (e.g. previous,
current, and next files), this should not incur problems.

The error bound on a cubic spline interpolation is given in [1] by:

ε ~ (1/4!) max | f(4)(x) | (∆x/2)4

where ∆x = xj+1 – xj and f(4)(x) is the fourth derivative of the tabulated function. The maximum
interpolation error occurs at the mid-point of the interpolation interval. For the ephemeris
problem, all of the state coordinates are sinusoidal functions with the primary variation being due
to the orbital frequency, e.g.:

X ~ A sin(ωt + φ),

Version 3.0 10/5/01 13

so that

max | X(4)(t) | ~ A ω4.

In terms of the semimajor axis a of the orbit (about 7.2 x 106 meters for QuikSCAT) and the
mass parameter of the Earth µ = 3.986032 x 1014 m3/sec2 the error bound can be written as:

ε ~ (1/384) µ2 (∆t)4/a5 = 2.1 x 10-8 (∆t)4 meter.

Note that this is supposed to be an upper bound, yet for time intervals of up to 200 to 300
seconds the resulting expected position error is much less than the expected uncertainty of the
GPS ephemeris. This simple formula, parametrized only by the time interval over which a
particular interpolation is performed, provides the means by which the derived ephemeris values
used in the processing can be quality-controlled, and flagged if needed.

INPUTS

From calling program (e.g. Level processor):

time R*8 Time, expressed in seconds from January 1, 1993, at which the
ephemeris is to be interpolated

neph_total I*4 Number of unique ephemeris data points (times) actually read from
the ephemeris file(s).

ephTime R*8 Array of [NPTS] times of ephemeris data, expressed in seconds
from January 1, 1993

xPos,yPos, R*8 Arrays of [NPTS] spacecraft position vector components, in
zPos meters
xVel,yVel, R*8 Arrays of [NPTS] spacecraft velocity vector components, in m/sec
zVel
deriv R*8 Array of [NPTS,6] values of the second derivatives of the six

spline functions of the state vector components, computed at each
ephemeris data point.

From call(s) to module 1.2.2 (Compute Spline Interpolator):

dt R*8 Time interval between data points in which the requested time
falls; used to compute error estimate.

OUTPUTS

cpos R*8 Array of interpolated spacecraft position coordinates (X,Y,Z =
1,2,3)

cvel R*8 Array of interpolated spacecraft velocity coordinates (X,Y,Z =
1,2,3)

err_est R*8 Value of the error estimator ε, expressed in meters

Version 3.0 10/5/01 14

PROCESSING

Step 1. Call module 1.2.2 (Compute Spline Interpolator) once for each state vector coordinate
(six times in all). These calls fill the interpolated state vector arrays cpos and cvel.

Step 2. Using the value dt of the data time interval, compute the error estimate err_est.

Step 3. Return cpos, cvel, and err_est to the calling program.

AUXILIARY DATA

The following are needed in the computation of the interpolation error estimate:

aorb = 7.2d6 approximate value of the orbit semimajor axis (meters)
 xmu = 3.986005d14 Earth gravitational parameter (m**3/sec**2)

REFERENCES

[1] Burden, R. L., J. D. Faires, and A. C. Reynolds, Numerical Analysis, pp. 107-119 (error
formula is on p. 119).

Version 3.0 10/5/01 15

SeaWinds Algorithm Specification

TITLE: Compute Spline Interpolator
SUBMODULE: Spacecraft Ephemeris Interpolation
MODULE: SWS Spacecraft Location and Nadir Location
CODE: L1B.1.2.2
VERSION: 2.0
DATE: October 19, 2001
AUTHOR: R. Scott Dunbar
SUBROUTINE: SPLINT.F
LANGUAGE: FORTRAN
HERITAGE: Numerical Recipes
__

L1B.1.2.2 Spline Interpolator

PURPOSE

Compute the cubic spline interpolator to obtain y = y(x) at a given value of x. This is a
general-purpose routine for the cubic spline calculation taken from Numerical Recipes [1].

REQUIREMENTS

This algorithm shall contribute errors of no more than 100 m in the position components
and 0.1 m/sec in the velocity components of the spacecraft state vector as compared to an "exact"
ephemeris computation at the given time.

BACKGROUND

The cubic spline interpolator [1] is one of many alternative algorithms we could choose to
solve our ephemeris problem. The cubic spline algorithm uses an interpolation formula of the
form:

y = Ayj + Byj+1 + Cy” j + Dy” j+1

where

A = (xj+1 – x)/(xj+1 – xj)

B = 1 – A = (x – xj)/(xj+1 – xj)

C = (1/6) (A3 – A) (xj+1 – xj)
2

D = (1/6) (B3 – B) (xj+1 – xj)
2

Version 3.0 10/5/01 16

The yj are the tabulated values of the function that are to be interpolated, and the second
derivatives y” j are computed by demanding that the formula should return the exact tabular
values yj given x = xj, and that the first derivatives should be continuous. The interpolator is
called once for each state vector coordinate at the given time.

INPUTS

N I*4 Number of data points in the X and Y arrays
XA R*8 Array of abscissae (times), max dimension NMAX ≥ N
YA R*8 Array of ordinates (state coordinates) , max dimension NMAX ≥ N
Y2A R*8 Array of computed second derivatives, max dimension NMAX ≥ N
X R*8 Time at which the interpolated value is to be computed

OUTPUTS

Y R*8 Cubic spline interpolated value of YA at time X
 H R*8 Length of the time interval (∆X) in which the value of X falls (needed for

computing the interpolation error)

PROCESSING

Step 1. Determine the bounding data points KLO and KHI of X in the XA array by bisection.

Step 2. Compute the value of H = XA(KHI) – XA(KLO) = time interval in seconds.

Step 3. Compute the cubic spline interpolated value of Y as follows:

A = (XA(KHI) - X)/H

B = (X - XA(KLO))/H

Y = A*YA(KLO) + B*YA(KHI) +
((A**3 - A)*Y2A(KLO) + (B**3 - B)*Y2A(KHI))*(H**2)/6.

INTERNAL VARIABLES

A, B R*8 Temporary variables used in the computation of the spline interpolator

REFERENCE

[1] Press, Flannery, Teukolsky, Vetterling (1986) “Cubic Spline Interpolation” , Numerical
Recipes, section 3.3, pp. 86-89, Cambridge University Press, 1986.

Version 3.0 10/5/01 17

SeaWinds Algorithm Specification

TITLE: Locate Spacecraft Nadir
SUBMODULE: Spacecraft Nadir Location
MODULE: SWS Spacecraft Location and Nadir Location
CODE: L1B.1.3.1
VERSION: 2.0
DATE: February 22, 1999
AUTHOR: R. Scott Dunbar
SUBROUTINE: NADIR
LANGUAGE: FORTRAN
HERITAGE: NSCAT ATB (nadir.F)
__

L1B.1.3.1 Nadir

PURPOSE

Compute geodetic location of spacecraft nadir point from knowledge of the spacecraft
location at a given frame time.

REQUIREMENTS

The error introduced by the nadir location algorithm in the output quantities, given the
spacecraft position coordinates, shall be no larger than 1 part in 104.

BACKGROUND

The geodetic location of the spacecraft nadir point and the spacecraft altitude are required
for subsequent Level 1B processing. These quantities may be computed for a given frame time
once the cartesian spacecraft coordinates have been determined from the ephemeris.

The algorithm described here assumes an ellipsoidal Earth with equatorial radius R and
flattening factor f. Refer to Figure 3 for a representation of the geometry of this problem. The
spacecraft coordinates are given by (x,y,z), and the nadir coordinates to be determined are the
longitude λ, the geodetic latitude ϕ, and the altitude H. Computation of the nadir longitude is
straightforward, but ϕ and H must be solved for simultaneously by an iterative procedure because
of the ellipsoid. It is also useful to define the (constant) flattening factors

f1 = 1 - f
 (1)

f2 = f(2 - f)

to simplify the formulation. We also compute the distances

Version 3.0 10/5/01 18

ρ = [x2 + y2 + z2]1/2 (2)
and

r = [x2 + y2]1/2 (3)

The nadir longitude is found from

L = tan-1 (y/x) (4)

Trial values of ϕ and H are then determined by

ϕo = sin-1(z/ρ) (5)
and

Ho = ρ - R(1 - f sin2ϕ) (6)

The iterative solution for ϕ and H begins by computing the factors

g0 = R [1 - f2 sin2 ϕ]-1/2 (7)

g1 = g0 + H (8)

g2 = g0 (1 - f)2 + H (9)

Then corrections to r, z, H, and ϕ can be formed:

dr = r - g1 cos ϕ (10)

dz = z - g2 sin ϕ (11)

dH = dr cos ϕ + dz sin ϕ (12)

dϕ = (dz cos ϕ - dr sin ϕ)/(R + H + dH) (13)

The new values of H and ϕ are thus

ϕ = ϕ + dϕ (14)
and

H = H + dH (15)

The process has converged if, given a tolerance ε:

|dϕ| < ε
and (16)

|dH|/(R + H) < ε

Version 3.0 10/5/01 19

If these relations are not satisfied, we insert the new values of j and H from (14) and (15)
into the computation starting at equation (7) and compute new corrections. This process
converges rapidly, although for safety we may set a limit on the number of iterations which, if
exceeded, returns the current values with a "no convergence" flag. The final outputs are from
equations (4), (14), and (15), plus the logical convergence flag.

INPUTS

 XYZ(3) R*8 Cartesian coordinates of the spacecraft, determined in EPHINT
(L1B.1.1.1).

OUTPUTS

 GLAT R*8 Geodetic latitude of spacecraft nadir, degrees.
 ELON R*8 Longitude of spacecraft nadir point, degrees.
 HT R*8 Spacecraft altitude in kilometers.
 ICONV L*4 Convergence flag for the iteration; .true. if converged, .false. if not.

PROCESSING

Step 1. Initialize convergence flag ICONV = .true., and compute the flattening factors and r =
sqrt(x*x + y*y) needed in later computations.

Step 2. Check that XYZ(1) is not zero to avoid arctangent problems in computing nadir
longitude; if it is, set x = 10-11.

Step 3. Compute nadir longitude λ (make sure that ELON > 0), and convert to degrees:

λ = ELON = datan2(y,x)*rtd

Step 4. Compute trial values of RHO, GLAT, and HT (eqs. 2,5,6) to start off the iteration, and
initialize an iteration counter.

Step 5. Compute corrections to GLAT and HT using eqs. 7-15.

Step 6. Check the size of the corrections against the error tolerance to test convergence, and
check that the number of iterations has not exceeded the maximum. If not converged, go
back to step (5). If the iteration limit has been exceeded, set ICONV = .false. and return
to EPHINT.

Step 7. If convergence has been achieved, convert GLAT to degrees (HT is already done), and
return to EPHINT with ICONV = .true.

Version 3.0 10/5/01 20

AUXILIARY DATA

 AE R*8 Earth equatorial radius, kilometers = 6378.197
 FLAT R*8 Earth ellipsoid flattening factor = 3.352810665d-3
 PI R*8 Circumference/diameter ratio = 3.14159265358979
 TWOPI R*8 2*PI
 DTR R*8 Degree-to-radian conversion = 0.0174532925199433
 RTD R*8 Radian-to-degree conversion = 57.2957795130823

 TOL R*8 Convergence tolerance = 1.0d-14
 (machine precision limit)
 MAX I*4 Iteration limit = 10

INTERNAL VARIABLES

 ITER I*4 Iteration counter
 DR R*8 Correction to r (eq. 10)
 DZ R*8 Correction to z (eq. 11)
 DHT R*8 Correction to H (eq. 12)
 DLATR R*8 Correction to ϕ (radians) (eq. 13)

COMMENTS

Double precision computations (variables and functions) should be used throughout.

REFERENCES

[1] Escobal, P. R. Methods of Orbit Determination, Krieger Publishing Co., Inc., 1976, pp.
23-28.

[2] Science Algorithm Specifications for the NASA Scatterometer Project, Vol. 2.

Version 3.0 10/5/01 21

SeaWinds Geometry Algorithms

Module L1B.2.0

ALGORITHM SPECIFICATIONS

AUTHOR(s): S. Vincent Hsiao
Anzhen Zhang

VERSION: 2.0
DATE: October 31, 1999

Version 3.0 10/5/01 22

SeaWinds Geometry Algorithms
MODULE L1B.2.0

I. Module Overview

The SeaWinds Geometry Algorithms Module encompasses all calculations related to the
determination of backscatter footprint location and other geometric parameters needed for all
subsequent algorithm processing. This module is subdivided into six principal submodules:

L1B.2.1 Geometry Algorithm Interface from 1A to 1B Processor
L1B.2.2 General Geometry (coordinate systems and transformations)
L1B.2.3 Antenna Geometry (antenna pointing)
L1B.2.4 Cell Location and Geometry (footprint location, range, etc.)

These submodules are described in the following sections.

GEOMETRY ALGORITHM INTERFACE FROM 1A TO 1B PROCESSOR(L1B.2.1)

This is the driver part of the Geometry algorithm. It reads the Level 1A data file, calls the
other submodules, and writes the Level 1B data file.

GENERAL GEOMETRY (L1B.2.2)

This submodule specifies the coordinate systems used in SeaWinds geometry
computations and the transformations between coordinate systems. Geometry calculations
related to spacecraft (s/c) position are also included in this module. The outputs are used in the
Antenna Geometry and Cell Geometry algorithm submodules.

There are three coordinate systems used in SeaWinds geometry computations (see Figure
1). The first is an Earth-centered, Earth-fixed coordinate system. The second is a s/c-centered
local coordinate system whose orientation is determined by the s/c position and inertial velocity
vectors. The third is a s/c-centered, s/c-fixed spacecraft body coordinate system. Details and
transformations of the coordinate systems can be found later in this specification.

The following geometry computations are performed in this module:
1. The geocentric s/c position vector;
2. The orientation of local coordinate system in the geocentric system;
3. The matrix for the coordinate transformation due to roll, pitch, and yaw of the s/c.

ANTENNA GEOMETRY (L1B.2.3)

This submodule performs all geometric calculations related to antenna pointing. In this
submodule the antenna maximum gain direction is computed by considering the roll, pitch, and
yaw angles of s/c. The direction vector from the spacecraft to the egg center is also calculated in

Version 3.0 10/5/01 23

this submodule. The outputs are used in the Cell Geometry submodule to locate the egg center
on the Earth's surface.

CELL LOCATION AND GEOMETRY (L1B.2.4)

This submodule uses the outputs of the General Geometry and Antenna Geometry
algorithms to determine the location and geometry of both eggs and slices. The outputs of this
submodule are used in surface flag detection (L2A.1.4), the sigma0 and Kp computation
(L1B.3.0), subtrack binning (L2A.1.3), and wind retrieval (L2B.2.0).

The direction from the spacecraft to the egg center computed in Antenna Geometry is
used to compute the position vector of the egg center. The longitude and geocentric latitude of
the egg center are then calculated.

The X values for both eggs and slices are computed from the X-factor table. The
elevation and azimuth angles, with respect to the egg center, of all the slices are computed from
the slice location table. The slice locations are then calculated.

Once the locations of the eggs and slices are known, the following quantities can be computed:

• Geodetic latitude and longitude for grouping and for land and ice flagging;
• Azimuth angle and incidence angle, for wind retrieval.

II. Functional Flow Description

The submodule Geometry Algorithm Interface (L1B.2.1) is first invoked in the Level 1B
processing. Submodules L1B.2.2 to 2.5 are then called from and controlled by the Geometry
Algorithm Interface.

GENERAL GEOMETRY:

L1B.2.2.1 - Local Coordinate System - (COMPUTE_LOCAL_COORD) determines the orienta-
tion of the local coordinate system;

L1B.2.2.2 - Attitude Matrix - (COMPUTE_ATTITUDE_ROTATN_MATRIX) calculates the
elements of the matrix for coordination transformation due to roll, pitch, and yaw;

L1B.2.2.3 - Spacecraft Body to Local Coordinate Transformation - (CONVERT_SC_
TO_LOCAL) transforms s/c body coordinates to local coordinates including attitude
adjustments. Used in Antenna Geometry computations to transform the maximum gain
directions;

L1B.2.2.4 - Geocentric-Local Transformation - (CONVERT_BETWEEN_RECT_LOCAL)
converts Earth-fixed s/c velocity from the geocentric coordinate system to the s/c-centered local
coordinate system;

Version 3.0 10/5/01 24

L1B.2.2.5 - Rectangular to Longitude-Latitude Transformation - (CONVERT_RECT_TO_GEO)
Converts cartesian coordinates to geocentric latitude and longitude;

L1B.2.2.6 - Geocentric to Geodetic Latitude Transformation - (COMPUTE_GEODETIC_LAT)
uses the adopted Earth ellipsoid model to convert geocentric latitude to geodetic latitude;

L1B.2.2.7 - Convert from Geocentric to Geographic Coordinates -
(CONVERT_GEOCEN_GEOGRAPH) computes the transformation matrix from the geocentric
to (N,E,D) (North-East-Down) coordinate systems;

ANTENNA GEOMETRY:

L1B.2.3.1 - Boresight - (COMPUTE_MAX_GAIN_DIR) calculates the antenna maximum gain
direction in s/c body coordinate system;

L1B.2.3.2 - Calculation of Measurement Time - (DETERMINE MEASUREMENT_TIME)
Determine the measurement time for every measurement.

CELL LOCATION AND GEOMETRY:

L1B.2.4.1 - Locate Cell Center - (LOCATE_CELL_ON_EARTH) locates the footprint center on
Earth surface in rectangular coordinates, which is then transformed by CONVERT_RECT_TO_
GEO to geocentric longitudes and latitudes;

L1B.2.4.2 - Incidence Angle - (COMPUTE_INCIDENCE_ANGLE) calculates the incidence
angle;

L1B.2.4.4 - Cell Azimuth - (COMPUTE_CELL_AZIMUTH_ANGLE) calculates the footprint
azimuth angle from north;

L1B.2.4.5 – Range Tracking and Doppler Shift - (DOPPLER_SHIFT_RANGE_TRACKING)
duplicates the CDS calculations of Doppler shift and range tracking;

L1B.2.4.6 – X-factor and Slice Location - (COMPUTE_X_LOC) calculates the X factor values
and slice locations from tables.

Version 3.0 10/5/01 25

Figure.1 S/C Coordinate Systems

0o E
0o N X, Y, Z: Geocentric Coordinates

S, T, U : Local Coordinates
Xb, Yb, Zb: S/C Body Coordinates

Yb

T

U
Yaw

S

Zb

S

Roll

Pitch

X

Y

Z

T

U

U

Orbit Plane

Version 3.0 10/5/01 26

Doppler_Shift_Range_Track

Compute_Local_Coordinates

Compute_Max_Gain_Dir

Convert_SC_To_Local

Convert_Between_Rect_Local

Locate_Cell_On_Earth

Compute_X_Loc

Compute_Attitude_Rotatn_Matrix

Compute_Geodetic_Lat

Compute_Incidence_Angle

Determine_Measurement_Time

Convert_Rect_To_Geo

Compute_Cell_Azimuth_Angle

Figure 2 Geometry Module Flow Chart

time

antenna azimuth angle, orbit time

S/C position, velocity

roll, pitch, yaw

antenna look angle

slice azimuth, elevation

x-factors
slice location

longitude

geodetic latitude

incidence angle

cell azimuth angle

Version 3.0 10/5/01 27

equator
C

D

C Geocentric Latitude
D Geodetic Latitude

Figure 3. Geodetic Latitude

R

I

 2 2 2 2 2

X + Y + Z / (1 - e) = a

Figure 4. Cell Location

S

r

s

n

Version 3.0 10/5/01 28

SeaWinds Algorithm Specification

TITLE: LOCAL COORDINATE SYSTEM
SUBMODULE: General Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.2.1
VERSION: 1.1
DATE: 03/31/99
AUTHOR: S. Vincent Hsiao
SUBROUTINE: COMPUTE_LOCAL_COORD
LANGUAGE: FORTRAN
HERITAGE: SEASAT, NSCAT
__

L1B.2.2.1 Compute_Local_Coord

PURPOSE:

To calculate unit vectors of the axes of the s/c-centered local coordinate system. The outputs
are used for the transformation between geocentric and local coordinate systems.

BACKGROUND:

The local rectangular coordinate system is defined by (See Figure 1):

origin - spacecraft (s/c)
axis S - points to T x U
axis T - points to U x v
axis U - points to -r

where v is the s/c inertial velocity and r is the s/c position in the geocentric rectangular coordinate
system. If the s/c orbit eccentricity were 0, axis S would coincide with v.

PROCESSING:

Step 1. Calculate unit vector u = -r / r
Step 2. Calculate unit vector t = u x v / v
Step 3. Calculate unit vector s = t x u

INPUTS:

 r position vector of s/c in geocentric coordinate, km
 v inertial velocity of s/c in geocentric coordinate, km/s

Version 3.0 10/5/01 29

OUTPUTS:

 s unit vector in S direction
 t unit vector in T direction
 u unit vector in U direction

REFERENCES:

1. JPL 622-14, SEASAT-A Instrument Data Processing System Detailed Functional Specification,
Vol. 1, June 1977

2. JPL D-5610, Science Algorithm Specifications for the NASA Scatterometer Project

Version 3.0 10/5/01 30

SeaWinds Algorithm Specification

TITLE: ATTITUDE MATRIX
SUBMODULE: General Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.2.2
VERSION: 1.1
DATE: 03/31/99
AUTHOR: S. Vincent Hsiao
SUBROUTINE: COMPUTE_ATTITUDE_ROTATN_MATRIX
LANGUAGE: FORTRAN
HERITAGE: NSCAT
__

L1B.2.2.2 Compute_Attitude_Rotatn_Matrix

PURPOSE:

Construct a matrix for coordinate transformation due to roll, pitch, and yaw of s/c.

BACKGROUND/PROCESSING:

The spacecraft body coordinate system is defined by:

origin - s/c
axis Xb - to the front of s/c
axis Yb - to the right of s/c
axis Zb - to the nadir side of s/c.

If roll, pitch, and yaw are all zero, the spacecraft body coordinate system coincides with the local
coordinate system. The s/c body coordinate system can be obtained by a T-S-U ordered rotation of
axes by pitch(P), roll(R), and yaw(Y) angles of local coordinate system.

A vector in the s/c system can be converted to the local system by [see Ref. 2]:

 S COS(P) 0 SIN(P) -1 1 0 0 -1
 T = 0 1 0 * 0 COS(R) -SIN(R)
 U -SIN(P) 0 COS(P) 0 SIN(R) COS(R)

 COS(Y) -SIN(Y) 0 -1 Xb Xb
 * SIN(Y) COS(Y) 0 * Yb = A * Yb
 0 0 1 Zb Zb

Version 3.0 10/5/01 31

It is assumed here that the s/c attitude is given in the order of pitch-roll-yaw with respect to the T-
S-U axes of local coordinate system. If the attitude sequence is given differently the sequence of
matrix multiplication has to be changed accordingly.

INPUTS:

R roll angle, deg
P pitch angle, deg
Y yaw angle, deg

OUTPUT:

Aij, i=1,3, j=1,3 = attitude matrix

REFERENCES:

1. JPL D-5610, Science Algorithm Specifications for the NASA Scatterometer Project

2. Korn, G. A. and T. M. Korn, Mathematical Handbook for Scientists and Engineers, 2nd ed.,
McGraw-Hill, 1968

Version 3.0 10/5/01 32

SeaWinds Algorithm Specification

TITLE: S/C BODY TO LOCAL COORDINATE TRANSFORMATION
SUBMODULE: General Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.2.3
VERSION: 1.1
DATE: 03/31/99
AUTHOR: S. Vincent Hsiao
SUBROUTINE: CONVERT_SC_TO_LOCAL
LANGUAGE: FORTRAN
HERITAGE: SEASAT,NSCAT
__

L1B.2.2.3 Convert_SC_To_Local

PURPOSE:

To transform a vector from the spacecraft (s/c) body coordinate system to the local
coordinate system by roll, pitch, and yaw of s/c.

BACKGROUND/PROCESSING:

See the Algorithm Specification for "Attitude Matrix" (L1B.2.2.2) for additional details
on the coordinate transformation matrix.

The following calculation is done in this subroutine:

 O(i) = Σ [I(j)×P(i,j)] i=1,3
j=1,3

INPUTS:

I vector in s/c body coordinate system
P(i,j), i=1,3, j=1,3 matrix calculated in subroutine

COMPUTE_ATTITUDE_ROTATN_MATRIX

OUTPUTS:

O transformed vector in local coordinate system

REFERENCES:

1. JPL D-5610, Science Algorithm Specifications for the NASA Scatterometer Project

Version 3.0 10/5/01 33

2. Korn, G. A. and T. M. Korn, Mathematical Handbook for Scientists and Engineers, 2nd ed.,
McGraw-Hill, 1968

Version 3.0 10/5/01 34

SeaWinds Algorithm Specification

TITLE: GEOCENTRIC-LOCAL TRANSFORMATION
SUBMODULE: General Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.2.4
VERSION: 1.1
DATE: 03/31/99
AUTHOR: S. Vincent Hsiao
SUBROUTINE: CONVERT_BETWEEN_RECT_LOCAL
LANGUAGE: FORTRAN
HERITAGE: SEASAT, NSCAT
__

L1B.2.2.4 Convert_Between_Rect_Local

PURPOSE:

Perform coordinate transformations between the geocentric rectangular and the
s/c-centered local coordinate systems.

BACKGROUND/PROCESSING:

If s, t, and u are unit vectors of the S, T, and U axes of the local coordinate system in
geocentric coordinates, respectively, then vector A in the geocentric coordinate system can be
transformed to vector B in the local coordinate system by:

 B(1) = A(1)*s(1) + A(2)*s(2) + A(3)*s(3)
 B(2) = A(1)*t(1) + A(2)*t(2) + A(3)*t(3)
 B(3) = A(1)*u(1) + A(2)*u(2) + A(3)*u(3).

The inverse transformation is performed by:

 A(1) = B(1)*s(1) + B(2)*t(1) + B(3)*u(1)
 A(2) = B(1)*s(2) + B(2)*t(2) + B(3)*u(2)
 A(3) = B(1)*s(3) + B(2)*t(3) + B(3)*u(3).

INPUTS:

 s unit vector of S axis in geocentric coordinates
 t unit vector of T axis in geocentric coordinates
 u unit vector of U axis in geocentric coordinates
 A if transformation is geocentric --> local

Version 3.0 10/5/01 35

 B if transformation is local --> geocentric

OUTPUT:

 B if transformation is geocentric --> local
 A if transformation is local --> geocentric

REFERENCES:

JPL 622-14, SEASAT-A Instrument Data Processing System Detail Functional Specification,
Vol. 1, June 1977

JPL D-5610, Science Algorithm Specifications for the NASA Scatterometer Project

Version 3.0 10/5/01 36

SeaWinds Algorithm Specification

TITLE: RECTANGULAR SYSTEM TO LONG-LAT TRANSFORMATION
SUBMODULE: General Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.2.5
VERSION: 1.1
DATE: 03/31/99
AUTHOR: S. Vincent Hsiao
SUBROUTINE: CONVERT_RECT_TO_GEO
LANGUAGE: FORTRAN
HERITAGE: NSCAT
__

L1B.2.2.5 Convert_Rect_To_Geo

PURPOSE:

Calculate longitude and geocentric latitude from a position vector.

BACKGROUND/PROCESSING:

The following equations transform a position vector (x,y,z) in the geocentric rectangular
coordinate system to longitude (G) and geocentric latitude (T):

 H = SQRT(x*x + y*y + z*z)
 G = ARCTAN2(y,x)
 T = ARCSIN(z/H).

INPUTS:

(x,y,z) position vector of the center of an instantaneous sigma-0 cell, km

OUTPUTS:

G longitude of the center or a corner of an instantaneous sigma-0 cell, deg.
T geocentric latitude of the center or a corner of an instantaneous sigma-0 cell, deg.

REFERENCE:

1. JPL D-5610, Science Algorithm Specifications for the NASA Scatterometer Project

Version 3.0 10/5/01 37

SeaWinds Algorithm Specification

TITLE: GEOCENTRIC TO GEODETIC LATITUDE TRANSFORMATION
SUBMODULE: General Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.2.6
VERSION: 1.1
DATE: 03/31/99
AUTHOR: S. Vincent Hsiao
SUBROUTINE: COMPUTE_GEODETIC_LAT
LANGUAGE: FORTRAN
HERITAGE: NSCAT
__

L1B.2.2.6 Compute_Geodetic_Lat

PURPOSE:

To calculate geodetic latitude from geocentric latitude.

BACKGROUND/PROCESSING:

The geodetic latitude (D) is defined in Figure 3. It is the latitude on regular maps.
However, the geocentric latitude (C) is used in most of the geometry computations because it is
easier to calculate. To convert from geocentric to geodetic latitude the following equation can be
used (See Reference 1):

D = tan -1 [tan C / (1-e2)].

where e is the ellipticity of the Earth.

INPUTS:

C geocentric latitude, deg

OUTPUTS:

D geodetic latitude, deg

REFERENCES:

1. Escobal, Theory of Orbit Determination, 1968.
2. JPL D-5610, Science Algorithm Specifications for the NASA Scatterometer Project.

Version 3.0 10/5/01 38

SeaWinds Algorithm Specification

TITLE: BORESIGHT
SUBMODULE: Antenna Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.3.1
VERSION: 1.1
DATE: 03/31/99
AUTHORS: S.V. Hsiao
SUBROUTINE: COMPUTE_MAX_GAIN_DIR
LANGUAGE: FORTRAN
HERITAGE: SeaWinds ATB Compute_Max_Gain_Dir
__

L1B.2.3.1 Compute_Max_Gain_Dir

PURPOSE:

Calculate the antenna maximum gain direction in the s/c body coordinate system.

BACKGROUND/PROCESSING:

The maximum gain direction of an antenna in the s/c body coordinate system is obtained
by rotating (0,0,1) by antenna azimuth(A) and look angle(L) with respect to the 3rd and 2nd axes
of the s/c body coordinate system, i.e.

 F(1) = SIN(L)*COS(A)
 F(2) = SIN(L)*SIN(A)
 F(3) = COS(L)

INPUTS:

L antenna look angle, deg
A antenna azimuth angle, deg

OUTPUTS:

F unit vector of the antenna maximum gain direction in s/c body coordinate system

Version 3.0 10/5/01 39

SeaWinds Algorithm Specification

TITLE: CALCULATION OF MEASUREMENT TIME
SUBMODULE: Antenna Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.3.3
VERSION: 1.1
DATE: 03/31/99
AUTHORS: S.V. Hsiao and A. Zhang
SUBROUTINE: Determine_Measurement_Time
LANGUAGE: FORTRAN
HERITAGE: SeaWinds ATB
__

L1B.2.3.3 Determine_Measurement_Time

PURPOSE

Determine the measurement time for every pulse. This time is defined as the time the
antenna beam strikes the Earth’s surface, which, generally speaking, is half way between the
transmission time and the receiving time. The adjustment in this algorithm is based on the first
transmitting timetag value of the data frame.

REQUIREMENT

The error for a determined timetag value at the receiving time should be less than
1.0exp(-4) sec.

BACKGROUND

The timetag of the first transmission time is reported by every telemetry data package.
The pulse time for every pulse needs to be determined in order to correctly calculate the location
of the beam on the Earth’s surface. This algorithm determines the pulse time by two steps:

(1) determination of a transmitting time for a pulse, using the frame time, and
(2) adjustment of the timetag from a transmission time to a pulse time.

For a specific antenna beam, the difference in slant range between the two successive pulses is
less than 8km for outer beam and 5.5 km for inner beam, respectively. The corresponding time
errors are within our error budgets.

Based on this fact, the first step is to determine the time difference between the frame
timetag and a beam’s transmitting time:

delt1 = float(num_in_frame-1) /prf. (1)

Version 3.0 10/5/01 40

Then a transmitting timetag is determined by adding delt1 to the frame time.

timetag = frame_timetag + delt1 (2)

Finally, the timetag is adjusted to match the time that the beam hits the Earth using the slant
range of the previous pulse (r_slant_old(ibeam)) of the same antenna beam:

delt2 = r_slant_old(ibeam)/C. (3)

timetag = timetag + delt2 (4)

INPUTS

Variable Name Units Dimension Description
frame_timetag sec timetag at transmitting time of the first pulse
num_in_frame the current pulse number in the data frame
prf Hz pulse repetition frequency
r_slant_old Km slant range of previous pulse
ibeam beam ID (inner/outer)

OUTPUTS

Variable Name Units Dimension Description
timetag sec timetag for the current pulse time
delt2 sec time adjustment

PROCESSING

1. Calculate the time difference between the frame time and the current transmitting time by
using eq. (1).

2. Determine the current transmitting time by eq.(2).

3. Calculate the time adjustment by using eq. (3). If it is the first pulse of processing, or it is the
first pulse after a data gap, then use the nominal slant range instead of the previous range in
eq.(3).

4. Calculate the current pulse time by eq. (4).

CONSTANTS

C the speed of light
r_slant_nom(2) nominal slant range for inner / outer beam

Version 3.0 10/5/01 41

INTERNAL VARIABLES

Variable Name Units Dimension Description
delt1 sec time difference between current transmission time

and frame time

Version 3.0 10/5/01 42

SeaWinds Algorithm Specification

TITLE: LOCATE CELL CENTER
SUBMODULE: Cell Location and Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.4.1
VERSION: 1.1
DATE: 03/31/99
AUTHOR: S. Vincent Hsiao
SUBROUTINE: LOCATE_CELL_ON_EARTH
LANGUAGE: FORTRAN
HERITAGE: SEASAT, NSCAT
__

L1B.2.4.1 Locate_Cell_On_Earth

PURPOSE:

Compute the intersection of the vector from the spacecraft to the cell center with the
Earth's surface.

BACKGROUND:

The Earth is assumed to be an oblate elli psoid here. The equations to be solved for the
cell center position are [see Figure 4]:

X**2 + Y**2 + Z**2/(1 -e*e) = a**2 [1]

r + S * s = R [2]

where:

R = (X,Y,Z) is the position of cell center,
e = eccentricity of the Earth,
a = semi-major axis of the Earth,
r = (x,y,z) is the position vector of s/c in geocentric system,
S = slant range,
s = unit vector in the direction from s/c to the cell center in geocentric system.

By substituting X, Y, and Z from Equation [2], Equations [1] can be reduced to

C1*S**2 + 2*C2*S + C3 = 0 [3]

Version 3.0 10/5/01 43

where

C1 = s(1)**2 + s(2)**2 + s(3)**2/(1-e**2) [4]
C2 = x*s(1) + y*s(2) + z*s(3)/(1-e**2) [5]
C3 = x**2 + y**2 + z**2/(1-e**2) - a**2. [6]

PROCESSING:

Step1.Calculate C1, C2, and C3 using [4], [5], and [6].

Step2.Solve the quadratic equation [3] for S.

Step3.Calculate R using [2].

 If equation [3] has two real roots, the larger one, which represents a point on the far side of the
Earth’s surface, is discarded. Complex roots indicate that there is no solution on the Earth' s
surface. In this case a flag (If) is set and the next cell is processed.

INPUTS:

r s/c position vector, km
s unit vector from s/c to the cell center

OUTPUTS:

R cell center position vector, km

If flag indicating whether beam hit the Earth’s surface, 1=yes, -1=no

AUXILIARY DATA:

a semi-major axis of the Earth, km

e eccentricity of the Earth

REFERENCES:

[1] JPL 622-14, SEASAT-A Instrument Data Processing System Detail Functional Specification,
Vol. 1, June 1977

[2] JPL D-5610, Science Algorithm Specifications for the NASA Scatterometer Project.

Version 3.0 10/5/01 44

SeaWinds Algorithm Specification

TITLE: INCIDENCE ANGLE
SUBMODULE: Cell Location and Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.4.2
VERSION: 1.1
DATE: 03/31/99
AUTHOR: S. Vincent Hsiao
SUBROUTINE: COMPUTE_INCIDENCE_ANGLE
LANGUAGE: FORTRAN
HERITAGE: SEASAT, NSCAT
__

L1B.2.4.2 Compute_Incidence_Angle

PURPOSE:

Calculate the incidence angle at cell center.

BACKGROUND:

The incidence angle is defined as the angle between the local normal vector at the Earth's
surface and the s/c to cell center direction vector [see Figure 4]. The local normal at cell center,
R = (X,Y,Z), is

n = (2*X/a**2, 2*Y/a**2, 2*Z/b**2) [1]

where a is the semi-major axis of the Earth and b is the semi-minor axis of the Earth. The
incidence angle can be calculated by

I = 180 - ARCCOS [DOT(s,n) / n] [2]

where s is the unit vector of (R - r) and r is the position vector of the s/c.

PROCESSING:

Step1.Calculate n using [1];

Step2.Calculate I using [2].

Version 3.0 10/5/01 45

INPUTS:

R position vector of cell center, km

OUTPUTS:

I incidence angle, deg

AUXILIARY DATA:

a semi-major axis of the Earth, km
b semi-minor axis of the Earth, km

INTERNAL DATA:

s unit vector of (R - r), from slant range calculation.

REFERENCES:

[1] JPL 622-14, SEASAT-A Instrument Data Processing System Detailed Functional
Specification, Vol. 1, June 1977

[2] JPL D-5610, Science Algorithm Specifications for the NASA Scatterometer Project

Version 3.0 10/5/01 46

SeaWinds Algorithm Specification

TITLE: CELL AZIMUTH ANGLE
SUBMODULE: Cell Location and Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.4.4
VERSION: 1.1
DATE: 03/31/99
AUTHOR: S. Vincent Hsiao, A. Zhang
SUBROUTINE: COMPUTE_CELL_AZIMUTH_ANGLE
LANGUAGE: FORTRAN
HERITAGE: SeaWinds ATB
__

L1B.2.4.4 Compute_Cell_Azimuth_Angle

PURPOSE:

Calculate the cell azimuth angle from the north.

BACKGROUND:

The cell azimuth angle is the clockwise angle measured from the north to the s/c to cell
center direction vector s [see Figure 4] then projected on the north-east plane in the geographic
coordinates (see L1B.2.2.7).

From the geocentric latitude and longitude of the cell center, a transformation matrix
between the geocentric and geographic coordinates is computed using L1B.2.2.7. The vector s is
then transformed to the geographic coordinates. The azimuth angle is computed by ATAN2(sE,
sN) where sE, and sN are the east and north components of s, respectively.

PROCESSING:

Step1. Call L1B.2.2.5 to calculate s/c longitude and geocentric latitude;

Step2. Call L1B.2.2.7 to calculate transformation matrix;

Step3. Convert s to the geographic coordinates;

Step4. Compute azimuth angle by ATAN2(sE, sN).

Version 3.0 10/5/01 47

INPUTS:

s = s/c to cell center direction vector
s/c position vector

OUTPUTS:

cell azimuth angle

INTERNAL DATA:

transformation matrix from geocentric to geographic coordinate systems

REFERENCE:

[1] Chong-Yung Chi, "Orbital and Geometric Calculations for NSCAT", JPL MEMO 3343-86-
272, Dec. 2, 1986

Version 3.0 10/5/01 48

SeaWinds Algorithm Specification

TITLE: DOPPLER_SHIFT_RANGE_TRACKING
SUBMODULE: General Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.4.5
VERSION: 1.1
DATE: 03/31/99
AUTHOR: S. Vincent Hsiao
SUBROUTINE: DOPPLER_SHIFT_RANGE_TRACK
LANGUAGE: FORTRAN
HERITAGE: None
__

L1B.2.4.5 Doppler_Shift_Range_Track

PURPOSE:

Duplicate the CDS computation of Doppler shift and range tracking in order to compute
the base-band frequency accurately.

BACKGROUND:

The Doppler shift , fd , in Hz is computed by:

fd = a0 + a1 cos(α + p1) [1]

where

a0 = a0m C + a0b [2]
a1 = a1m A + a1b [3]
p1 = p1m P + p1b , [4]

α is the true antenna azimuth angle and C, A, and P values are extracted from the Doppler shift
table indexed in orbit steps. The range delay, Dr, in ms is computed the same way except using
the range delay table and a different set of a0m, a0b, a1m, a1b ,p1m, and p1b values. In Eq. [1], in
order to match the CDS computation, a cosine table is used instead of the cosine function.

The true antenna azimuth angle α in DN is computed by:

αDN = αr + δb + δc+ δe+ δi [5]

where αr is the raw azimuth angle, δb is the beam offset, δc is the centering offset, δe is the

Version 3.0 10/5/01 49

encoder offset, and

δi = pri*cds_spin_rate [6]

is the internal offset. The centering offset, δc , is computed by:

δc = δi (range_delay_prev_pulse + pulse_width) /2 /pri . [7]

Note that when the above computation is executed, the range_delay_prev_pulse and pulse_width
are in DN’s with scale of 0.049903 ms/DN but the pri is in DN with scale of 0.099806ms/DN.
Thus the actual computation is

δc = δi (range_delay_prev_pulseDN + pulse_widthDN) /4 /priDN . [8]

The quantization of azimuth angles is such that 32768 DN equals one full circle.

The commanded delay, Dc , in real DN is

Dc = Dr / RD– (range_gate_widthDN – pulse_widthDN)/2. [9]

where RD (= 0.049903 ms/DN) is the delay resolution.

The commanded Doppler frequency, fc , in Hz is

fc = -Rf × nint ({ fd + µ [Dc – nint(Dc)]}/R f) [10]

where Rf (= 2000 Hz/DN) is the frequency resolution and µ is the chirp rate.

The commanded delay, Dc , in ms is

Dc = nint(Dc) RD . [11]

The base-band frequency, fbb, which will be used in computing X factors and slice locations, is:

fbb = (-fc + µDc) – (fp + µDp) + µ × Ds [12]

where

Ds = (range_gate_width – pulse_width)/2. – Cd [13]

is the frequency delay offset, Cd is a constant, and Dp = 2(slant_range)/speed_of_light.

The cosine table has 256 entries corresponding to argument 0 to 2π×255/256. The cosine values
are linearly interpolated.

Version 3.0 10/5/01 50

PROCESSING:

1. Compute the internal offset (Eq. [6]) and round it to integer.

2. Compute the true antenna azimuth angle in real DN (Eqs. [5] and [8]).

3. Convert the true antenna azimuth angle from DN to radians.

4. Compute a0, a1, and p1 for range delay (Eqs. [2], [3], and [4]).

5. Compute the range delay in ms (Eq. [1]).

6. Convert the range delay to real DN, save the value to range_delay_prev_pulse, and compute
the commanded range delay in real DN (Eq. [9]).

7. Convert the commanded range delay to (rounded) integer DN.

8. Compute a0, a1, and p1 for Doppler shift (Eqs. [2], [3], and [4]).

9. Compute Doppler shift in Hz (Eq. [1]).

10. Compute the commanded Doppler shift in Hz (Eq. [10]).

11. Convert the commanded range delay from DN to ms (Eq. [11]).

12. Compute the Ds in ms (Eq. [13]).

INPUTS:

1. Doppler step, an integer ranging from 0 to 255.

2. Raw antenna azimuth angle in DN from L1A.

3. Beam number, 1=inner, 2=outer.

4. Encoder number.

5. Range gate width in DN from L1A.

6. Pulse width in DN from L1A.

7. pri (pulse repetition interval) in DN from L1A.

Version 3.0 10/5/01 51

OUTPUTS:

1. Commanded Doppler shift in Hz.

2. Commanded range delay in ms.

3. Delay shift in ms.

AUXILIARY DATA:

1. cds_spin_rate (in DN/ms) = spin_rate(rpm)/60.×32768./1000.

2. Chirp rate (µ) in kHz/ms.

3. Constant (CD = 0.04905722 ms) in computing delay_shift. It is computed from three
constants given in Ref. 3.

4. Beam offset, two values for inner and outer beams.

5. Encoder offset, two values for two encoder flags.

6. Cosine table, array of 256 real numbers.

REFERENCE:

[1] Glenister, R., SeaWinds Doppler and Range Algorithms, JPL Interoffice Memorandum 3347-
98-002, Jan. 15, 1998

[2] Glenister, R., The CDS Implementation of the Doppler Shift and Range Tracking

Algorithms, JPL Interoffice Memorandum 3347-98-051, Sep. 15, 1998

[3] Glenister, R., Frequency and Gate Centering Scheme, JPL Interoffice Memorandum 3347-98-

057, Oct. 9, 1998

Version 3.0 10/5/01 52

SeaWinds Algorithm Specification

TITLE: COMPUTE_X_LOC
SUBMODULE: General Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.4.6
VERSION: 1.1
DATE: 07/31/01
AUTHOR: S. Vincent Hsiao
SUBROUTINE:
LANGUAGE: FORTRAN
HERITAGE: None

L1B.2.4.6 Compute_X_Loc

PURPOSE:

To compute the X factor values and slice locations from the tables.

BACKGROUND:

Using the table, the X factor is computed by

X = Xnom + B∆f + C∆f 2 + D∆f 3 [1]

where Xnom , B, C, and D are interpolated table values, and

∆f = fbb /δf + SH [2]

where S is interpolated from the table, H is the local elevation extracted from the elevation map
of _ degree resolution, δf is the width of FFT bins, and fbb is the base-band frequency shift
computed as.

fbb = µ(Dc + Ds - 2R/c) – fc -fp [3]

where µ is the chirp rate, Dc is the commanded range delay, Ds is a delay offset term computed in
Algorithm L1B.2.4.5 (DOPPLER_SHIFT_RANGE_TRACKING), R is the slant range at the
boresight, c is the speed of light,) fc is the commanded Doppler frequency, and fp is the Doppler
frequency at the boresight.

The slice locations are computed by

αaz = Aaz + Baz ∆f [4]

Version 3.0 10/5/01 53

αel = Ael + Bel ∆f [5]

where αaz and αel are azimuth and elevation angle offsets from the boresight, Aaz , Baz , Ael and
Bel are interpolated values from the table.

Using the tables, the maximum errors for the inner beam are 0.12 dB for X , 0.009 dB for
X egg, 0.024 degrees for the azimuth angle, and 0.008 for the elevation angle. For the outer
beam the maximum errors are 0.05 dB for X , 0.012 dB for X egg, 0.018 degrees for the azimuth
angle, and 0.0045 degrees for the elevation angle. See Reference 3.

PROCESSING:

1. Compute the orbit time index by [(32.*orbit_time/orbit_period) mod 32].

2. Compute the antenna azimuth angle index by [36.*antenna_azimuth_angle/360].

3. Using bilinear interpolation, compute the S factor; Aaz , Baz , Ael and Bel for 8 center slices;
and Xnom , B, C, and D for 8 center slices and for egg.

4. Compute fbb Using Eq. [3].

5. Compute H:
i=mod(nint(longitude/0.25),1440)+1
j=nint((latitude+90.)/0.25)+1
H=Height(i,j)

6. Compute ∆f using Eq. [2].

7. Compute X using Eq. [1].

8. Compute αaz and αel Using Eqs. [4] and [5].

INPUTS:

1. Beam number, an integer, 1=inner beam, 2=outer beam.

2. Resolution mode, an integer, valid value ranges from 1 to 8, however, 8 is not used.

3. Orbit time in seconds.

4. Antenna azimuth angle in degrees.

5. Latitude of boresight ground point, in degrees.

Version 3.0 10/5/01 54

6. Longitude of boresight ground point, in degrees.

7. Doppler frequency at boresight in Hz.

8. Commanded Doppler frequency in Hz.

9. Slant range at boresight in meters.

10. Commanded range delay in seconds

11. Delay offset in seconds.

OUTPUTS:

1. X factors for eight center slices and egg.

2. Azimuth and elevation angle offsets from the boresight for eight center slices.

AUXILIARY DATA:

1. Chirp rate in Hz/s.

2. Light speed in m/s.

3. Xnom , B, C, and D tables, real arrays with dimension (9,2,36,32,8), the first index indicates
the eight slices and egg, the second index is the beam number, the third is the antenna
azimuth angle index, the fourth is the orbit time index, and the fifth is the resolution mode.

4. S table, real array with dimension (2,36,32,8), the indices are the same as the last four indices
of the above.

5. Aaz , Baz , Ael and Bel tables, real arrays with dimension (8,2,36,32,8); the indices are the same
as item 3 except for the first index, here the values for eggs are not needed.

6. Height data in meters, a two-byte integer array of dimension (1440,721), each element
Height(i,j) in the array indicates the elevation of a 0.25 × 0.25 degree area centered at
(0.25*(i-1)) east longitude and (0.25*(j-1)-90.) latitude.

7. Orbit period in seconds.

8. FFT bin width in Hz.

Version 3.0 10/5/01 55

REFERENCES:

1. X Factor Utilization Algorithms, Spencer, M. et.al., September 28,1998, Jet Propulsion

Laboratory, Interoffice Memorandum 3347-98-54.

2. Correcting X for Topography, Ashcraft, I.S., December 17, 1998, Brigham Young University,
MERS Technical Report # MERS 98-07

3. Background and Accuracy Analysis of the Xfactor7 Table: Final Report on SeaWinds X
Factor Accuracy, Jones, B.E., et. al., January 13,1999, Brigham Young University, MERS
Technical Report # MERS 99-01.

4. How to Produce and Use the X-factor Table, Ashcraft, I.S., January 12,1999, Brigham Young
University, MERS Technical Report # MERS 99-03.

Version 3.0 10/5/01 56

SeaWinds Algorithm Specification

TITLE: SELECT BEST EIGHT SLICES
SUBMODULE: Cell Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.4.7
VERSION: 1.0
DATE: 05/15/01
AUTHOR: S. Vincent Hsiao
SUBROUTINE:
LANGUAGE: FORTRAN90
HERITAGE: None
__

L1B.2.4.7 Select_Best_Eight_Slices

PURPOSE:

To select the best eight consecutive slices out of the center ten slices of an echo spectrum.

BACKGROUND:

The distribution of echo power in the ten center slices of a measurement pulse is affected
by the orbit and attitude of the spacecraft. In the data processing, eight consecutive slices, out of
the center ten, that best represent the measurement are used. The outer two slices (1st and 12th

slices) are "guard" slices and are not used. The selection of the best eight (center eight or
"higher" or "lower" eight) can be decided by the "frequency shift" value which contains the
effects of orbit and attitude.

The existing QuikSCAT data have been examined, confirming that the computed
"frequency shift" is a good indicator of where the power peak is.

INPUTS:

1. frequency shift in Hz

2. resolution mode of the measurement (1 to 8)

OUTPUTS:

starting index of the best eight slices, possible values are 2, 3, and 4.

Version 3.0 10/5/01 57

AUXILIARY DATA:

echo band width of the center ten data slices in Hz, real(8) array

PROCESSING:

Step 1. Set the starting index to 3.

Step 2. Compute (frequency_shift)/[10_slice_echo_band_width(resolution_mode)]/10.

Step 3. If the result in Step 2. is less than -0.5, set the starting index to 2.

Step 4. If the result in Step 2. is greater than 0.5, set the starting index to 4.

Version 3.0 10/5/01 58

SeaWinds Algorithm Specification

TITLE: CALCULATE FREQUENCY LINE
SUBMODULE: Cell Location and Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.4.8
VERSION: 1.0
DATE: 08/31/01
AUTHOR: S. Vincent Hsiao
SUBROUTINE: Locate_Freq_Lines.F
LANGUAGE: FORTRAN
HERITAGE: QuikSCAT
__

L1B.2.4.8 Locate_Freq_Lines

PURPOSE:

Calculate contour lines of base-band frequencies corresponding to the center of slices.

BACKGROUND:

For each pulse, the return power is further separated into “slices” using FFT. The
baseband frequency of a target on the ground is dependent on Doppler frequency and slant range:

f = 2µ(s – sc)/c – (fd – fd,c) [1]

where µ is the chirp rate, c is the speed of light, s is the slant range, sc is the commanded slant
range, fd is the Doppler frequency, and fd,c is the commanded Doppler frequency.

In this algorithm, the frequency contour lines corresponding to the center of slices near
the antenna bore sight is computed.

The frequency in Hz at the center of slices, fs ,can be computed as:

fs = (ns-5.5)∆f-230.9 [2]

where ∆f is slice width in Hz, ns is slice number from 1 to 10. The constant 230.9 in Equation
[1] is there because at the boundary between slice five and six the frequency is negative of one
half of the FFT bin width (461.8 Hz).

It is assumed that the frequency contours are locally straight lines in the azimuth_angle-
look_angle surface. The task of locating a line becomes finding two points on the line. This is

Version 3.0 10/5/01 59

done by iteratively finding two look angles on the contour line with corresponding azimuth
angles of ±0.9 degree from pulse center.

INPUTS:

1. commanded Doppler frequency, computed in Calculate_Range_Doppler
2. commanded range, computed in Calculate_Range_Doppler
3. slice width in Hz, resolution mode dependent
4. beam index, indicate inner or outer beam
5. roll-pitch-yaw matrix for coordinate transformation due to attitude, computed in

Calculate_Attitude_Rotation_Matrix
6. velocity of s/c in local coordinate system(for Doppler frequency computation), computed in

Calculate_Relative_Velocity
7. rotation matrix between local and geocentric coordinate systems, computed in

Calculate_Local_Coord
8. s/c velocity from ephemeris
9. s/c position from ephemeris
10. antenna azimuth angle
11. antenna look angle

OUTPUTS:

relative_look_angle
the relative look angles (to the pulse center look angle) at the frequency contours
corresponding to the 8 slice centers and the azimuth angles of ±0.9 degree from the pulse
center, real array of dimension (2,8), the first index indicates –0.9 and +0.9 degree
relative azimuth angles and the second index indicates the 8 slices being used

PROCESSING:

Set azimuth_angle = antenna_azimuth – 0.9. Set look_angle_trial = antenna_look –0.8 as
initial value for iteration, then loop through each slice of data in the order of increasing look
angle (reverse slice order):

1. set df+ = 0. and df− =0.
2. compute the base-band frequency of the slice, fs ,by Eq. [2].
3. using azimuth_angle and look_angle_trial, by calli ng L1B.2.3.1 (Calculate_Boresight),

L1B.2.2.7 (Calculate_Relative_Velocity), and L1B.2.2.3 (Convert_SC_To_Local) to
compute the slant range and Doppler frequency.

4. compute the frequency ,f ,by Eq. [1], and compute df = f- fs

5. if df is less than 10 Hz, the look angle is found, then compute the relative look angle
(look_angle_trial−antenna_look) , put into the output array, and go to step 1 to do the next
slice.

6. if not, then compute the next look angle to try by:
6.a. if df > 0 then df+ =df and set A+=look_angle_trial

Version 3.0 10/5/01 60

6.b. if df < 0 then df− =df and set A−=look_angle_trial
6.c. if df+•df− > 0.01, the solution is bracketed, then compute the next look angle by

interpolation: look_angle_trial= A−+ (A+−A−)(−df−)/(df+−df−)
6.d. if not , compute the next look angle by look_angle_trial= look_angle_trial −

(df/df)•0.2
7. go to step 3.

When the slice loop is done, set azimuth_angle = antenna_azimuth + 0.9 and look_angle_trial =
antenna_look –0.8 and loop through each slice again.

Version 3.0 10/5/01 61

SeaWinds Algorithm Specification

TITLE: LOCATE PEAK GAIN
SUBMODULE: Cell Location and Geometry
MODULE: SeaWinds Geometry
CODE: L1B.2.4.9
VERSION: 1.0
DATE: 08/31/01
AUTHOR: S. Vincent Hsiao
SUBROUTINE: Locate_Peak_Gain.F
LANGUAGE: FORTRAN
HERITAGE: QSCAT
__

L1B.2.4.9 Locate_Peak_Gain

PURPOSE:

Find the peak gain along the contour lines of base-band frequencies corresponding to the
center of a slice.

BACKGROUND:

The location of the center of a slice is represented by the location of peak gain along the
contour line corresponding to the center frequency of the slice. In this algorithm, for each slice,
the two-way antenna gain along the contour line (computed in L1B.2.4.7) are computed using bi-
linear interpolation at azimuth angles from –1.0 to +1.0 degrees with 0.05 degree increment.
Then a quadratic fit through the highest and two neighboring points is used to find the maximum
gain value and its location.

INPUTS:

1. relative_look_angle
relative look angles (to the pulse center look angle) at the frequency contours
corresponding to the 8 slice centers and the azimuth angles of ±0.9 degree from pulse
center, real array of dimension (2,8), the first index indicates –0.9 and +0.9 degree
relative azimuth angles and the second index indicates the 8 slices being used.

2. antenna_gain_in and antenna_gain_out
two-way antenna gain for inner and out beam, respectively, dimension is (-60:60, -
150:150), the first index multiplied by 0.05 is the corresponding relative azimuth angle
and the second index multiplied by 0.03095356 is the corresponding relative look angle

Version 3.0 10/5/01 62

OUTPUTS:

1. peak_gain
 maximum gain along the frequency contour of the cell center frequency, in dB; real array

of dimension 8.

2. peak_gain_relative_look_angle

 look angle relative to the boresight at the peak gain, in degrees; real array of dimension 8

3. peak_gain_relative_azimuth_angle

azimuth angle relative to the bore sight at the peak gain, in degrees; real array of
dimension 8

PROCESSING:

Do for each slice:

1. Compute the look angle increment corresponding to 0.05 degree azimuth angle increment:
dl= (relative_look_angle(2,i)−relative_look_angle(1,i))/36., where i is the slice number.

2. Compute the starting relative look angle: angle_look= relative_look_angle(1,i)−2•dl

3. Starting with relative look angle of angle_look and relative azimuth angle of –1.0, with

increments of dl and 0.05, respectively, ending when azimuth angle is greater than +1.0,
compute the antenna gain, ag(i), i=1,41, using bi-linear interpolation in antanna_gain_in or
antanna_gain_out array depending on the beam index

4. Find the maximum gain, if the maximum gain is greater than the threshold (-40 dB), and fit

the maximum and two neighboring gains through a quadratic equation

5. Compute gain, look angle, and azimuth angle corresponding to the maximum of the quadratic

equation

Steps 4 and 5 can be accomplished by:
 c=ag(j-1) ! j-1 is the index of the maximum ag
 b=0.5*(ag(j)-ag(j-2))
 a=ag(j)-b-c
 xm=-0.5*b/a
 peak_gain =xm*(a*xm+b)+c
 peak_gain_relative_look_angle =angle_look(j-1)+xm*dl
 peak_gain_relative_azimuth_angle =-1.05+0.05*(xm+j-1)

Version 3.0 10/5/01 63

QuikSCAT/SeaWinds Sigma0 and Kp Algorithm

MODULE L1B.3.0

ALGORITHM SPECIFICATIONS

R. Scott Dunbar
Vincent Hsiao

Young-Joon Kim
Kyung Pak

 Angela Zhang

VERSION: 2.0

DATE: October 31, 1999

Version 3.0 10/5/01 64

SeaWinds Sigma0 and Kp Algorithm

I. MODULE OVERVIEW

Introduction

This algorithm specification describes the computation of the radar backscattering
coefficient, sigma0. This computation is performed for each sigma0 measurement of Level 1A
data. The output from this module to the Level 1B (L1B) record includes the sigma0, the
conversion factor which relates received signal energy to sigma0 (X_factor), the calibration part
of the X_factor, X_cal, and the ratio of signal to noise energy (SNR), as well as other instrument
parameters. This section gives a general overview of the algorithms. The individual submodule
description in section III provide more detailed background information on sigma0 and Kp
processing algorithms.

QuikSCAT/SeaWinds Instrument and Power Detection

The QuikSCAT/SeaWinds instrument is an active microwave radar designed to measure
electromagnetic wave scattering from wind roughened ocean surfaces. Unlike its predecessor
NASA Scatterometer (NSCAT), a fan-beam Doppler scatterometer, QuikSCAT/SeaWinds is a
conically scanning pencil-beam scatterometer. A pencil-beam scatterometer has several key
advantages over a fan-beam scatterometer; It has a higher signal-to-noise ratio, is smaller in size,
and provides superior coverage.

The instrument has a carrier frequency of 13.402 GHz (Ku-band). This is carefully chosen
to maximize the upwind-downwind asymmetry in ocean scattering signature. The scatterometer
transmits a sequence of RF pulses (5.4 msec interval) and measures the returned energy from the
Earth surface which is corrupted by the instrument thermal noise (signal-plus-noise energy). In
order to estimate an accurate sigma0, it is necessary to extract the signal-only energy by
subtracting the noise-only energy from the signal-plus-noise energy.

The approach of the QuikSCAT/SeaWinds design is to measure the signal-plus-noise
energy simultaneously in two receiving channels (also refer to as filters): echo and noise. The
instrument periodically performs a calibration measurement sequence in which the transmit
power into the receiver through loop-back calibration is measured for radiometric calibration and
a cold load is measured for thermal noise estimation. The cold load measurements relate echo
channel noise-only energy to the noise channel noise-only energy. This reduces the number of
unknown variables to signal-only energy and noise-only energy of the echo channel, which can
be solved by two independent signal-plus-noise energy measurements. The noise filter bandwidth
is 1 MHz and the echo filter bandwidth can vary from about 5.5 KHz to 198.6 KHz.

Signal Processing for a High Resolution

The QuikSCAT/SeaWinds instrument achieves a resolution higher than the antenna
footprint by transmitting a linear frequency-modulated chirp (LFMC) signal. The returned signal

Version 3.0 10/5/01 65

can be viewed as a superposition of scattering contribution from every point in the area
illuminated by the antenna beam. Each contributing source is a replica of the transmitted
waveform but delayed by a slant range difference which can be related to the time delay. The
summed waveform, (i.e. the echo signal), is then multiplied by a LFMC reference signal with a
conjugate phase. This step maps a distinct time delay of a received waveform to a
corresponding baseband frequency shift in the echo filter.

The extent of the baseband frequency shift allowed depends on the difference of the two
commanded parameters: pulse width and echo gate width. The echo gate width - pulse width
difference is referred to as the effective gate width which determines the resolution. By design,
the echo filter is divided into 12 sub-bands. The center 10 are equally spaced while the 2 outer
edge sub-bands are wider. The inner 10 sub-bands are called slices. Figure 1, illustrates the sub-
divisions of the echo filter and Table I summarizes the effective gate width modes (a.k.a. slice
resolution mode).

TABLE I: QuikSCAT/SeaWinds SES Resolution Mode (KHz)

Eff. GateWidth (msec) BW of Mid 10 BW of Edge 2 Significance
0 4.61833 0.92

0.1 23.0916 115.48
0.2 46.1833 115.48
0.3 69.2749 92.38
0.4 129.313 69.29 SES Default
0.5 83.1299 92.38 Nominal
0.6 106.221 78.52 CDS Default

Radar Equation and X_factor

The radar equation, which relates the radar return energy in terms of the transmitted
energy, the sigma0, and various electrical and geometric factors, is the basic relation used to
compute sigma0. The critical problem is to extract sigma0, given the other parameters, by
inverting the radar equation.

The radar equation consists of an integral over the scattering surface where the antenna
gain, the receiver response, the slant range vary from point to point. As a first approximation, if
sigma0 is assumed to be constant over this area (essentially, a mean value), then the sigma0 can
be solved as a function of the return/transmit energy ratio and the gain-slant range integral. To
avoid cumbersome numerical integration for every pulse in L1B processing, the integration is
pre-computed and tabulated based on nominal orbit parameters and antenna measurement
geometry. In addition, a perturbation table which can compensate for the errors in the integration
due to the difference between the nominal and the actual geometric parameters (orbit and antenna
geometry) is pre-computed. The combined nominal and perturbation table value gives the
integrated part of the X_factor, X_int. The calibration term of the X_factor, X_cal, together with
X_int gives a complete conversion factor to relate the received energy to sigma0. This table-

Version 3.0 10/5/01 66

driven processing approach is very accurate and significantly reduces L1B processing time.
These tables are a function of beam number, antenna azimuth angle, orbit position, slice number,
and resolution mode.

Parameters such as slant range and cell area are computed in the Geometry algorithm
module. In this sigma0 module, the ratio of echo return energy to transmit energy is estimated
from the down-linked QuikSCAT/SeaWinds telemetry parameters, power_DN, noise_DN, and
the loopback calibration and cold load measurements. In addition to calculating sigma0, the other
main functions of this module yield the signal to noise ratio (SNR) of each measurement and the
parameters which determine “communication noise” (Kpc).

Requirement:

Sigma0 processing error must be less than 0.1 dB.

II. FUNCTIONAL FLOW DESCRIPTION

The functional flow of this algorithm module is depicted in Figures 2 and 3. The Sigma0
and Kp algorithm is comprised of four submodules, referred to here by the names of Initialize
Calibration Parameters, Get Calibration Parameters, Energy Detection, Sigma0 and Variances
Estimation. The primary functions performed by these submodules are described in the
following:

Process_Calibration_Data (L1B.3.1.1)

This submodule pre-averages the instrument calibration data and repackages it in a data
structure for use in other L1B algorithms. This submodule is called by
Execute_Level1B_Algorithms L1B.3.0.0), the level 1B driver software.

Compute_Sigma0_and_Kp (L1B.3.2.1)

This is the driver algorithm for the sigma0 and Kp module. This algorithm is called by the
Level 1B processor Execute_Level1B_Algorithms (L1B.3.0.0).

Get_Cal_Data (L1B.3.3.1)

Given an input pulse time, this submodule retrieves the pre-averaged calibration
parameters from a time-ordered data structure created in Process_Calibration_Data
(L1B.3.1.1).

Est_Calibration_X (L1B.3.3.2)

Estimates the total calibration factor, X_cal The calibration factor is derived from the
calibration measurements, the system loss factors, the instrument parameters, and the
antenna peak power.

Version 3.0 10/5/01 67

Calculate_Pr_Pt_Ratio (L1B.3.4.1)

This is a mini-driver algorithm which controls the data flow from the subroutines that
calculate signal-only energy, noise-only energy, and their ratio.

Est_Noise_Energy (L1B.3.4.2)

This algorithm submodule calculates the noise-only energy in the echo filter using the
power detection equation.

Est_Signal_Energy (L1B.3.4.3)

Calculates the signal-only energy in the echo filter by subtracting out the noise-only
energy from the signal-plus-noise energy measurement.

Est_SNR (L1B.3.4.4)

Estimates the signal to noise energy ratio.

Est_Pr_Pt_Ratio (L1B.3.4.5)

Calculates the ratio of received signal-only energy to the transmitted energy.

Calculate_X_Factor (L1B.3.5.1)

Calculates the total correction factor. The correction factor is constructed from the
calibration part and the geometry part.

Calculate_Sigma0 (L1B.3.5.2)

Calculates the nornalized backscattering coefficient, sigma0.

Calculate_Kpc_Coeff (L1B.3.5.3)

Interpolates the instrument related parameter kpc_A from a pre-calculated table or it
calculates Kpc_A for a given instrument operation mode.

Version 3.0 10/5/01 68

1 MHz Noise Filter Bandwidth

175.5 Hz Echo Filter Bandwidth

46.2KHz

Figure 1: Illustration of Slice Resolution for 0.5msec Effective Gate Width

Version 3.0 10/5/01 69

Figure 2: Flow Diagram of Execute_Level1B_Algorithms Module

Level Processor

Compute_Cell_Geometry

Compute_Sigma0_and_Kp

Process_Calibration_Data

Compute_SC_Geometry

Execute_Level1B_Algorithms

Initialize Calibration Parameters

Version 3.0 10/5/01 70

Fi
gu

re
 3

: F
lo

w
 D

ia
gr

am
 o

f
C

om
pu

te
_S

ig
m

a0
_a

nd
_K

p

E
xe

cu
te

_L
ev

el
1B

_A
lg

or
it

hm
s C
om

pu
te

_C
el

l_
G

eo
m

et
ry

C
om

pu
te

_S
ig

m
a0

_a
nd

_K
p

G
et

_C
al

_D
at

a

C
al

cu
la

te
_P

r_
Pt

_R
at

io

C
om

pu
te

_S
ig

m
a0

_a
nd

_K
p

G
et

 C
al

ib
ra

ti
on

 P
ar

am
et

er
s

E
st

_C
al

ib
ra

tio
n_

X

E
st

_N
oi

se
_E

ne
rg

y
E

st
_S

ig
na

l_
E

ne
rg

y
E

st
_S

N
R

E
st

_P
r_

Pt
_R

at
io

E
ne

rg
y

D
et

ec
ti

on

C
om

pu
te

_C
el

l_
G

eo
m

et
ry

Si
gm

a0
 a

nd
 V

ar
ia

nc
e

E
st

im
at

io
n

Version 3.0 10/5/01 71

SeaWinds Algorithm Specification

TITLE: Compute the Radar Backscattering Coefficient
SUBMODULE: Initialize Calibration Parameters
MODULE: SeaWinds Sigma0 and Kp Algorithm
CODE: L1B.3.1.1
VERSION: 2.0
DATE: 10/31/99
AUTHOR: Kyung Pak
SUBROUTINE: Process_Calibration_Data
LANGUAGE: FORTRAN
HERITAGE: None
__

L1B.3.1.1 Process_Calibration_Data

PURPOSE

Pre-average the necessary calibration measurements; bandwidth ratio and signal-only
energy for both beams and stored them in a data structure (Cal_Struct) for later use.

BACKGROUND

QuickSCAT/SeaWinds instrument measures the signal-plus-noise energy in both echo
and noise filters. Nominally, a measurement is taken every 5.4 msec. By design, the SeaWinds
instrument periodically performs a calibration measurement sequence in which the transmit
power into the receiver through loop-back calibration is measured for radiometric calibration and
a cold load is measured for thermal noise estimation [1]. In order to obtain the backscattering
coefficient, sigma0, signal-only energy for the science measurement and the loop-back
calibration measurement must be calculated [2,3].

The signal-only energy can be estimated by solving the following power detection
equations:

Pe = Ps + Ne (1)

Pn = βPs + βαNe (2)

where b is a gain ratio of noise filter to echo filter (a pre-launch calibrated constant of 4.65 dB)

β ≡
Gr ,n

Gr,e

(3)

Version 3.0 10/5/01 72

α is a bandwidth ratio of noise filter to echo filter

α ≡
1

β

 Pn,load

Pe,load

(4)

Gr,n = noise filter gain.
Gr,e = echo filter gain.
Pe = signal-plus-noise energy in the echo filter.
Ne = noise-only energy in the echo filter.
Ps = signal-only energy in the echo filter.
Pn,load = cold load calibration measurement in the noise filter.
Pe,load = cold load calibration measurement in the echo filter.

and <*> represents ensemble average. Solving for the noise-only energy in the echo filter gives

Ne = 1

1−α

 Pe − Pn

β

 (5)

The signal-only energy can be obtained by equation (1). Similarly, the signal-only energy for a
loop-back calibration measurement is

Ps ,cal =
1

α −1

 α Pe,cal −

Pn,cal

β

 (6)

where

Pn,cal = loop-back calibration measurement in the noise filter.
Pe,cal = loop-back calibration measurement in the echo filter.

In ground processing the L1A processor extracts loop-back calibration and cold load
measurements, system temperature, and corresponding measurement times from level 0 data
outputs them to a file. Thus, in L1B processing the complete calibration data- set for a rev is
available. The analysis of instrument test data has demonstrated that in equation (4) the cold load
measurement must be averaged over at least 800 pulses and in equation (6) the loop-back
calibration measurements must be averaged over at least 10 pulses for stability [3]. We use a
simple moving average in this algorithm. For QuikSCAT/SeaWinds processing, a and Ps,cal

values are pre-averaged, time-tagged, and stored in a data structure (Cal_Struct). This provides
an efficient time-based access to the calibration data in subsequent processing. This algorithm
submodule performs the pre-averaging of the calibration parameters for later use.

REQUIREMENT

The retrieval algorithm must be able to process calibration files with gaps in the data and
bad calibration pulses [4].

Version 3.0 10/5/01 73

PROCESSING

Step 1: Given the input first_frame_time find a reference index i_mid.

Step 2:Find 800 nearest cold load times to the frame_time(i_mid) to get i_load_begin and
i_load_end. Also, find 10 nearest loop-back calibration pulse times to the
frame_time(i_mid) to get i_cal_a_begin, i_cal_a_end, i_cal_b_begin, and i_cal_b_end
(for the loop-back calibration pulses, the inner/outer beam are pre-averaged separately
[5]).

Step 3: Calculate the quantities <Pn,load>, <Pe,load>, <Pn,cal>, and <Pe,cal>.
frame_time_cal_secs = frame_time(i_mid)
num_cal_recs = num_cal_recs + 1

Step 4: Calculate bandwidth ratio and loop-back calibration signal-only energy using
equations (4) and (6), respectively. Store the pre-averaged calibration data:
frame_time_cal_secs, bandwidth_ratio, and loopback_cal_A/B.

Step 5:Get the next frame_time and increment i_mid if necessary. Repeat Steps 1-4 until the end of
the calibration data file. Finally, assign the num_cal_recs in the calibration data structure.

INPUTS

Variable Name Units Description

first_frame_time sec First frame time in a rev.
cal_pulse_struct Data structure containing one full setof calibration

pulse data for the rev.

OUTPUT

Variable Name Units Description
Cal_Struct This data structure contains num_cal_recs pre-averaged

calibration data. It contains the corresponding
frame_time_cal_secs, bandwidth_ratio, and
loopback_cal_A/B.

REFERENCES

[1] Liu, Yong, “QuikSCAT Telemetry Packet Processing - Order of Science Measurements,”
IOM 3347-98-029, June 7, 1998.

[2] [Lou, Shu-Hsiang and Yong Liu, “SeaWinds/QuikSCAT Sigma0 Calibration Model,” IOM

3347-97-025, December 19, 1997.

Version 3.0 10/5/01 74

[3] Lou, Shu-Hsiang and Yong Liu, “SeaWinds/QuikSCAT High and Low Resolution On-orbit

Calibration and Noise,” IOM 3347-98-019, March 27, 1998.

[4] Liu, Yong, “QuikSCAT Telemetry Packet Processing - Approach for Eliminating Bad

Calibration Measurement”, IOM 3347-98-030, June 8,1998.

[5] Liu, Yong, “Loop-back Calibration Pulse Processing in SES,” IOM 3347-98-010, January 30,

1998.

Version 3.0 10/5/01 75

SeaWinds Algorithm Specification

TITLE: Compute the Radar Backscattering Coefficient
SUBMODULE: Cell’s Sigma0 Estimation
MODULE: SeaWinds Sigma0 and Kp Algorithm
CODE: L1B.3.2.1
VERSION: 2.0
DATE: 10/31/99
AUTHOR: Kyung Pak and Angela Zhang
SUBROUTINE: Compute_Sigma0_and_Kp
LANGUAGE: FORTRAN
HERITAGE: None
__

L1B.3.2.1 Compute_Sigma0_and_Kp

PURPOSE

This driver algorithm computes the radar backscattering coeff icient (sigma0), the signal
to noise ratio, and the normalized standard deviation of sigma0 (Kpc) due to communication
noise.

BACKGROUND

This algorithm drives the Sigma0 and Kp module. It first calls Get_Cal_Data (L1B.3.3.1)

to retrieve the pre-averaged calibration pulse measurements corresponding to the pulse time.
Then it calls Est_Calibration_X (L1B.3.3.2) to estimate the calibration part of the X-factor using
the loss factors and the retrieved calibration pulse measurements. It next calls
Calculate_Pr_Pt_Ratio (L1B.3.4.1) to calculate the signal energy, noise energy, ratio of the
signal energy to the noise energy, and the ratio of the signal energy to the transmitted energy.
Then it calls Calculate_X _Factor (L1B.3.5.1) to return the total X-factor, and calls
Calculate_Sigma0 (L1B.3.5.2) to calculate the sigma0 value. Finally, it calls
Calculate_Kpc_Coeff (L1B.3.5.3) to calculate the instrument related parameter Kpc_A.

REQUIREMENT

The sigma0 processing error must be less than 0.1 dB.

PROCESSING

First, the processor checks the pulse quality to determine whether to proceed forward with
the execution of the sigma0 and Kp algorithms. Then the processor initializes parameters needed
by the sigma0 and Kp module and its subroutines: receiver index, effective gate width, and beam
number. Once the initialization is completed, the processor proceeds by calli ng the following

Version 3.0 10/5/01 76

algorithms in sequence:

Step 1: Retrieve pre-averaged loopback calibration and load pulse data associated
with the current pulse time.

call Get_Cal_Data (L1B.3.3.1)

Step 2: Estimate calibration components of the X-factor; X_Cal_A and X_Cal_B.
call Est_Calibration_X (L1B.3.3.2)

Step 3: Calculate energy ratios Pr/Pt and SNR.
call Calculate_Pr_Pt_Ratio (L1B.3.4.1)

Step 4: Calculate total X_factor values.
call Calculate_X_Factor (L1B.3.5.1).

Step 5: Calculate Sigma0 to estimate the radar backscttering coefficient.
call Calculate_Sigma0 (L1B.3.5.2)

Step 6: Estimate the normalized standard deviation coefficients.
call Calculate_Kpc_Coeff (L1B.3.5.3)

CONSTANTS/TABLES

Constant Name Units Description

Global_Constants Constants such as p.
L1B_Constants The run time constants required by the Level 1B

Processor.
Cal_Struct This data structure contains num_cal_recs pre-

averaged calibration data. It contains the
corresponding frame_time_cal_secs,
bandwidth_ratio, and loopback_cal_A/B.

Topo_Height m Earth topography map table.
S_Table 1/m A correction coefficient table used to compensate

for a baseband frequency error.

X_Factor_Table (1/m)
2

A table containing the geometric factor in the radar
equation that is based on the calculation of an
integral.

cal_temperature_coefficients An array of coefficients in a polynomial expansion
of fourth or lower order in spacecraft temperature to
determine the overall loss factor in the calibration
loop between the SeaWinds transmitter and receiver.

slice_noise_fraction A table of multipliers which, when applied to the
estimated pulse echo noise energy, generates a noise
energy for one of the slices within the echo signal.

Version 3.0 10/5/01 77

bb_freq_off_corr A correction to the calculated change in baseband
frequency. This correction reflects biases in the
baseband frequency which are due to perturbations
in the spacecraft attitude and the antenna look
angles.

Kpc_Parameters Coefficients which are used to determine the
normalized standard of the sigma0 measurement due
to the statistical nature of the received signal, or
kpc_A.

INPUTS

Variable Name Units Description

sigma0_mode_flag Bit flag which indicate the instrument mode and
status at the time the measurement was acquired.

frame_time_sec sec Frame time.
pulse_time sec Pulse time.
orbit_time counts Current orbit time.
rev_orbit_period sec Time required for the spacecraft to complete one

complete orbit.
precision_coupler_temp_eu CelsiusPrecision coupler temperature.
rcv_protect_sw_temp_eu Celsius Receive protect switch temperature.
beam_select_sw_temp_eu CelsiusBeam select switch temperature.
receiver_temp_eu CelsiusReceiver temperature.
range_gate_A_width DN Range gate width for beam A.
range_gate_B_width DN Range gate width for beam B.
pulse_width DN Pulse width.
antenna_azimuth deg Antenna azimuth angle.
cell_lat deg Geodetic cell latitude.
cell_lon deg Cell longitude.
power_DN DN Energy measured by the echo filter.
noise_DN DN Energy measured by the noise filter.
L1B_slice_dim Maximum slice dimension.
frequency_shift Hz The shift in the baseband frequency of a pulse due

to errors in the Doppler Binning Table and the
spacecraft attitude measurement.

OUTPUT

Variable Name Units Description

bandwidth_ratio The ratio of the rolling average of about 800 load calibration
measurements through the noise filter to the echo filter

slice_SNR dB The ratio of signal to noise for a slice.
SNR dB The ratio of signal to noise for a whole pulse.

Version 3.0 10/5/01 78

slice_Kpc_A Normalized standard deviation of slice signal.
sigma0_Kpc_A Normalized standard deviation of the whole echo signal.
slice_sigma0 dB Radar backscattering coefficient for each slice.
sigma0 dB Radar backscattering coefficient for a pulse.
X_cal_A dB Beam A radiometric calibration component of the X-factor.
X_cal_B dB Beam B radiometric calibration component of the X-factor.
X_factor dB Complete conversion factor from scatterometer received

signal energy to sigma0 value for each slice.
slice_qual_flag Bit flags which indicate the quality of the data for each

slice.
sigma0_qual_flag Bit flag which indicate the quality of the data for a pulse.

REFERENCES

[1] NASA/JPL Scatterometry Processing Algorithm and Analysis Group, “Science
Algorithm Specification for SeaWinds”, JPL, October 20, 1996.

Version 3.0 10/5/01 79

SeaWinds Algorithm Specification

TITLE: Compute the Radar Backscattering Coefficient
SUBMODULE: Get Calibration Parameters
MODULE: SeaWinds Sigma0 and Kp Algorithm
CODE: L1B.3.3.1
VERSION: 2.0
DATE: 10/31/99
AUTHOR: Kyung Pak
SUBROUTINE: Get_Cal_Data
LANGUAGE: FORTRAN
HERITAGE: None
__

L1B.3.3.1 Get_Cal_Data

PURPOSE

For a given input time (pulse_time), Get_Cal_Data.F retrieves the necessary pre-averaged
loop-back calibration elements, bandwidth_ratio, Signal_energy_cal_A and Signal_energy_cal_B
from a data structure (Cal_Struct).

BACKGROUND

Some of the instrument parameters needed to calculate sigma0 varies with time and/or
temperature on orbit. Therefore, it is necessary to monitor these changes in the instrument
continuously. By design, the SeaWinds instrument frequently performs a calibration
measurement sequence in which the transmit power into the receiver through loop-back
calibration is measured for radiometric calibration and a cold load is measured to estimate the
thermal noise. In ground processing the L1A processor extracts loop-back calibration and cold
load pulses, system temperature, and corresponding measurement times from the telemetry and
outputs them to a file. In Process_Calibration_Data.F (L1B.3.1.1), an algorithm averages over
800 load pulses and 10 loop-back calibration pulses. Then they are stored in a data structure,
Cal_Struct. The retrieved variables are used in the power detection algorithm in
Calculate_Pr_Pt_Ratio.F

REQUIREMENT

The retrieval algorithm must be able to process files with gaps in the data and bad
calibration pulses [1].

Version 3.0 10/5/01 80

PROCESSING

Step 1: Given the input pulse_time, perform a simple search by comparing the pulse_time
and the calibration time.

 DO WHILE ((.NOT. found_it) .AND. (.NOT. end_of_file))
 IF (pulse_time .LT. Cal_Struct.averages(index).frame_time_cal_secs) THEN
 found_it = .TRUE.
 ELSE
 index = index + 1

 IF (index .GT. Cal_Struct.num_cal_recs) THEN
 end_of_file = .TRUE.
 END IF

 END IF
 END DO

Step 2: Assign the appropriate signal_energy_cal and bandwidth_ratio values from the file
using the index variable from Step 1. Also, assign the new_cal flag by comparing current

index with the index_old.

 IF (.NOT. end_of_file) THEN

 IF (index .GT. index_old) THEN
 signal_energy_cal_A_save = Cal_Struct.averages(index).loop_back_cal_A
 signal_energy_cal_B_save = Cal_Struct.averages(index).loop_back_cal_B
 bandwidth_ratio_save = Cal_Struct.averages(index).bandwidth_ratio
 new_cal = .TRUE.
 index_old = index
 ELSE IF (index .EQ. index_old) THEN
 new_cal = .FALSE.
 END IF

 signal_energy_cal_A = Signal_energy_cal_A_save
 Signal_energy_cal_B = Signal_energy_cal_B_save
 bandwidth_ratio = bandwidth_ratio_save

 END IF

CONSTANTS/TABLES

Name Description

L1B_Constants The run time constants required by the Level 1B Processor.

Version 3.0 10/5/01 81

Cal_Struct This data structure contains num_cal_recs pre-averaged calibration data. It
contains the corresponding frame_time_cal_secs, bandwidth_ratio, and
loopback_cal_A/B.

INPUTS

Variable Name Units Description

pulse_time sec Pulse time.

OUTPUT

Variable Name Units Description
bandwidth_ratio The ratio of the rolling average of about 800 load

calibration measurements through the noise filter to the
echo filter

Signal_energy_cal_ADN Calibration energy of beam A pulse.
Signal_energy_cal_BDN Calibration energy of beam B pulse.
new_cal A flag indicating whether the signal_energy_cal_A and

signal_energy_cal_B was updated.

REFERENCES

 [1] Liu, Yong, “QuikSCAT Telemetry Packet Processing - Approach for Eliminating Bad
Calibration Measurements”, IOM 3347-98-030, June 8,1998.

Version 3.0 10/5/01 82

SeaWinds Algorithm Specification

TITLE: Compute the Radar Backscattering Coefficient
SUBMODULE: Get Calibration Parameters
MODULE: SeaWinds Sigma0 and Kp Algorithm
CODE: L1B.3.3.2
VERSION: 2.0
DATE: 10/31/99
AUTHOR: Kyung Pak
SUBROUTINE: Est_Calibration_X
LANGUAGE: FORTRAN
HERITAGE: None
__

L1B.3.3.2 Est_Calibration_X

PURPOSE

For a given signal-only energy of the loop-back calibration pulse, determine the
calibration part of the X-factor for both beams.

BACKGROUND

A backscattering coefficient, sigma0, and a signal-only energy measurement, Ps, is
related by the X-factor. The X-factor is a normalization factor which can be separated into two
parts; Xcal and Xint

sigma0 = Ps Xcal Xint[]−1

(1)

where

Xcal ≡
λ3

4π()3 Gp
2 1

La
2 Lw

2

 Lbias L23

L13L21

Lcal

Lop

 Ps_ cal (2)

X int ≡ d2 ρ

r
F fb

ρ
r ()()

R4 ρ
r ()∫∫ (3)

where

λ = Wavelength of the transmitted pulse.
Gp = Antenna peak gain.
Ps_cal = Signal-only energy of the loop-back calibration pulse.
Ps = Signal-only energy for an entire footprint in the echo channel.

Version 3.0 10/5/01 83

F(fb(r)) = Digital filter response of an entire footprint. The antenna gain pattern is
 also absorbed in this term.

PtGr = Transmitted power-receiver gain product.

σ0(x,y) = Scattering coefficient at position (x,y) on surface.
R(r) = Slant range to a point (x,y) on surface.
Lbias = Bias between the modeled and measured loss factor (-1.25 dB for

 receiver A and -1.17 dB for receiver B)
Lw = One way platform waveguide loss (0.21 dB inner beam, 0.24 dB outer

 beam).
La = Atmospheric loss.

and

Lsys = Lbias L13L21

L23

Lop

Lcal

 (4)

where the loss factor terms are

L13 = Receiver path insertion loss.
L21 = Transmitter path insertion loss.
L23 = Calibration path insertion loss.
Lcal/Lop = Calibration path attenuator loss.

Similar expression exists for the slice sigma0. The Xcal consists of system loss, calibration
constants, and signal-only energy of the loop-back calibration. The loss factors are functions of
system temperatures. To continuously track the varying system temperatures and Ps_cal, they are
periodically monitored and reported in the telemetry. For a given temperature, the loss factors are
modeled as N-th order polynomial expansion:

L = AnT
n

n=0

N

∑ (5)

The polynomial expansion coefficients, An, are stored in a data structure array
cal_temperature_coefficients. Also, cal_temperature_coefficients stores the high and low
temperature range values where these polynomial expansions are applicable. They range from 0
to 55 degrees Celsius. The following table lists the complete temperature ranges:

Loss Factor Temperature Range Table
Loss Factor Low (Celsius) High (Celsius)

L13 0 55
L21 0 55
L23 0 55

Lcal/Lop (side A) 5 40
Lcal/Lop (side B) 5 40

Version 3.0 10/5/01 84

In processing, for those temperatures values outside the valid ranges, the temperatures are
“pinned” to the min/max values and used in the loss factor calculations. The processor indicates
that the temperature values are out of range by turning on the appropriate bit in the
sigma0_qual_flag . When this bit is turned on the sigma0 must be used with caution.

The evaluation of the X int term is not computed by the L1B processor. Instead, it is pre-
computed and tabularized based on expected orbit and measurement geometry. The X int table is a
function of operational mode, orbit position, antenna azimuth angle, beam number, and slice
number.

REQUIREMENT

The sigma0 processing error must be less than 0.1 dB.

PROCESSING

Step 1: Given input temperatures, precision_coupler_temp_eu, rcv_protect_sw_temp_eu,
beam_select_sw_temp_eu, and receiver_temp_eu, compare the old and the new
temperatures. If the new set of temperatures are different than the old set of
temperatures, then proceed to check for the temperature ranges. If the new set of
temperatures are the same as the old set, then set skip to the end of the subroutine.

Step 2: Check the temperature ranges. If they are less than LOSS_FACTOR_HIGH_TEMP
 and greater than LOSS_FACTOR_LOW_TEMP then proceed with loss factor

calculation. For temperatures outside the range, “pin” the termperature to the
appropriate limit and turn on the temperature range bit flag of the sigma0_qual_flag,
then proceed.

Step 3: Calculate each loss factors using equation (4).

Step 4: Calculate the total system loss factor (all the loss terms in equation (2)) and the
X_cal_A and X_cal_B using equation (2).

IF (old_temp .NE. new_temp) THEN

 IF (new_temp .LT. max_temp_range .AND.
 new_temp .GT. min_temp_range) THEN

temp_within_range = .TRUE.

 ELSE IF (new_temp .GT. max_temp_range) THEN
temp_within_range = .FALSE.
temp = max_temp_range

 ELSE IF (new_temp .LT. min_temp_range) THEN

Version 3.0 10/5/01 85

temp_within_range = .FALSE.
temp = min_temp_range

 END IF

 calculate the loss factors
 calculate X_cal_A and X_cal_B

END IF

CONSTANTS/TABLES

Name Units Description
Global_Constants Global Constants such as p.
L1B_Constants The run time constants required by the Level 1B

Processor.
cal_temperature_coefficients The array lists the coefficients in a polynomial

expansion of fourth orlower order in spacecraft
temperature. The loss_factor_high_temp array and
the loss_factor_low_temp arrays specify the range
of temperatures where these polynomial expansions
are applicable.

INPUTS

Variable Name Units Description
receiver_index An identifier which indicates whether SES

side A/B is active.
signal_energy_cal_A DN The signal-only energy in the echo channel

for calibration beam A.
signal_energy_cal_B DN The signal-only energy in the echo channel

for calibration beam B.
precision_coupler_temp_eu Celsius The temperature of the precision coupler.
rcv_protect_sw_temp_eu Celsius The temperature of the receive protect switch.
beam_select_sw_temp_eu Celsius The temperature of the beam select switch.
receiver_temp_eu Celsius The temperature of the receiver.

OUTPUT

Variable Name Units Description
temp_within_range A logical flag which indicate if the temperature is

within a specified range.
L_sys dB The SES calibration loss factor.

Version 3.0 10/5/01 86

X_cal_A/X_cal_B DN*m2 The beam A/B component of the X-factor which
includes the system and calibration loss factors, the
antenna gain, as well as the loop-back calibration
pulse measure

REFERENCES

[1] Lou, Shu-Hsiang, “QuikSCAT Loss Factors,” IOM 3347-98-001, January 15, 1998.

[2] Lou, Shu-Hsiang, “QuikSCAT/SeaWinds X/K Factor Formulation,” IOM 3347-98-008,
January 26, 1998.

[3] Lou, Shu-Hsiang, “SeaWinds Loss Factors,” IOM 3347-98-050, August 20, 1998.

[4] Liu, Yong, “QuikSCAT Pcal Bias and Its Removal,” IOM 3347-98-056, October 5,1998.

Version 3.0 10/5/01 87

SeaWinds Algorithm Specification

TITLE: Compute the Radar Backscattering Coefficient
SUBMODULE: Energy Detection
MODULE: SeaWinds Sigma0 and Kp Algorithm
CODE: L1B.3.4.1
VERSION: 2.0
DATE: 03/03/99
AUTHOR: Kyung Pak
SUBROUTINE: Calculate_Pr_Pt_Ratio
LANGUAGE: FORTRAN
HERITAGE: None
__

L1B.3.4.1 Calculate_Pr_Pt_Ratio

PURPOSE

This is a mini-driver which controls the processing calls to Est_Noise_Energy.F,
Est_Signal_Energy.F, Est_SNR.F, and Est_Pr_Pt_Ratio.F.

BACKGROUND

QuickSCAT instrument measures the signal-plus-noise energy in both echo and noise
channels. In order to obtain the backscattering coefficient, sigma0 , noise-only energy must be
estimated and subtracted from the signal-plus-noise energy. Calculate_Pr_Pt_Ratio.F is a mini-
driver subroutine. Its main function is to make sequential FORTRAN calls to
Est_Noise_Energy.F to estimate the noise-only energy, Est_Signal_Energy.F to estimate the
signal-only energy, Est_SNR.F to calculate the ratio of the signal-only to noise-only energy, and
Est_Pr_Pt_Ratio.F to calculate the ratio of the signal-only energy to the transmitted energy. Then
it passes the necessary variables to the calling routine (Compute_Sigma0_and_Kp.F) for
subsequent sigma0 processing.

Calculate_Pr_Pt_Ratio is executed under both Wind Observation Mode (WOM) and
Receive Only Mode (ROM). In WOM, the mini-driver calls all four algorithms to estimate noise-
only energy, signal-only energy, SNR and Pr_Pt_ratio. In ROM, it calls only the core power
detection algorithm subroutines Est_Noise_Energy.F and Est_Signal_Energy.F.

PROCESSING

Step 1: Estimate the noise-only energy for each slice:
CALL Est_Noise_Energy

Version 3.0 10/5/01 88

Step 2: Estimate the signal-only energy for each slice:
CALL Est_Signal_Energy

Step 3: If the current instrument mode is WOM, then estimate the SNR. Otherwise skip the
rest of the subroutine.
CALL Est_SNR

Step 4: If the current instrument mode WOM, then estimate the Pr_Pt_ratio. Otherwise skip
the rest of the subroutine.

 CALL Est_Pr_Pt_Ratio

CONSTANTS/TABLES

Name Units Description
L1B_Constants The run time constants required by the Level 1B Processor.
slice_noise_fraction Factors used to calculate the noise-only energy for each of

the slices in the echo filter.

INPUTS

Variable Name Units Description
bandwidth_ratio The ratio of the rolling average of about 800 load calibration

measurements through the noise filter to the echo filter
Signal_energy_cal_A DN Calibration signal-only energy of beam A pulse.
Signal_energy_cal_B DN Calibration signal-only energy of beam B pulse.
power_DN DN Energy measured by the echo filter.
noise_DN DN Energy measured by the noise filter.
L_sys dB The SES calibration loss factor.
mode_index An identifier indicating the current effective gate width

(1-8).
receiver_index An identifier which indicates whether SES side A/B is

active.
L1B_slice_dim Maximum slice dimension.
sigma0_mode_flag The bit flag which indicate the instrument mode and status

at the time the measurement was acquired.

OUTPUT

Variable Name Units Description

slice_qual_flag Bit flags which indicate the quality of the data for each
slice.

sigma0_qual_flag Bit flag which indicate the quality of the data for a pulse.

Version 3.0 10/5/01 89

slice_SNR The ratio of signal to noise for a slice.
SNR The ratio of signal to noise for a whole pulse.
slice_Pr_Pt_ratio The ratio of the signal-only energy to the transmit energy

for each slice.
Pr_Pt_ratio The ratio of the sum of signal-only energy of center 10

slices to the transmit energy.
signal_energy_slice DN Signal-only energy of the echo filter output measurement

for each slice
signal_energy DN Sum of signal-only energy of the echo filter measurements

for the center 10 slices.

REFERENCE

[1] NASA/JPL Scatterometry Processing Algorithm and Analysis Group, “Science
Algorithm Specification for SeaWinds”, JPL, October 20, 1996.

Version 3.0 10/5/01 90

SeaWinds Algorithm Specification

TITLE: Compute the Radar Backscattering Coefficient
SUBMODULE: Energy Detection
MODULE: SeaWinds Sigma0 and Kp Algorithm
CODE: L1B.3.4.2
VERSION: 2.0
DATE: 10/31/99
AUTHOR: Kyung Pak
SUBROUTINE: Est_Noise_Energy
LANGUAGE: FORTRAN
HERITAGE: None
__

L1B.3.4.2 Est_Noise_Energy

PURPOSE

This subroutine calculates the noise-only energy in the echo filter in data number units
(DN).

BACKGROUND

QuickSCAT/SeaWinds instrument measures the signal-plus-noise energy in both echo
and noise filters. In order to obtain the backscattering coefficient, sigma0 , noise-only energy of
the echo filter must be estimated and subtracted from the signal-plus-noise energy. In order to
estimate the received noise-only energy in the echo filter the receiver gain ratio (b) must be
determined. b is a gain ratio of noise filter to echo filter, a pre-launch calibrated constant
(4.65dB). Also, the bandwidth ratio (a) of noise filter to echo filter needs to be calibrated on
orbit.

Equations for the whole pulse:

The noise-only energy can be estimated by solving the following power detection
equations:

Pe = Ps + Ne (1)

Pn = βPs + βαNe (2)

where

β ≡
Gr ,n

Gr,e

(3)

Version 3.0 10/5/01 91

α ≡
1

β

 Pn,load

Pe,load

(4)

Gr,n = noise filter gain.
Gr,e = echo filter gain.
Pe = signal-plus-noise energy in the echo filter.
Ne = noise-only energy in the echo filter.
Ps = signal-only energy in the echo filter.
Pn,load = cold load calibration measurement in the noise filter.
Pe,load = cold load calibration measurement in the echo filter.

Solving for the noise-only energy in the echo filter gives

Ne =
1

1−α

 Pe −

Pn

β

 (5)

Once the noise-only energy has been estimated using equation (5), signal-only energy in the echo
filter can be obtained using equation (1).

Equations for the individual slices:

The procedure for calculating the signal-only energy for individual slices follow similar
steps. For slices the echo filter measurement is

Pe ,i = Ps,i + N e,i (6)

where the slice bandwidth ratio and a slice noise fraction coefficient, qi, are defined as

αi ≡
1

β

 Pn ,load

Pe ,i,load

(7)

qi ≡
Pe ,i,load

Pe ,load

=
α
αi

(8)

Pe,i,load = cold load calibration measurement for the individual slices in the echo filter.

Using the slice noise fraction coefficient, the individual slice noise-only energy measurement is
calculated by the following relation

Ne ,i = qi Ne (9)

Once the Ne,i is determined, the individual slice signal-only energy is obtained using equation (6).

Version 3.0 10/5/01 92

PROCESSING

Step 1: Calculate noise-only energy for the whole pulse by using the power detection
equation:

 DO i_slice = 1,num_slices
 echo_energy = power_DN(i_slice) + echo_energy
 END DO

 echo_noise_energy
 = (noise_DN/RECEIVER_GAIN_RATIO- echo_energy) / (bandwidth_ratio - 1)

Step 2: Estimate the noise-only energy for the center 8 slices:

 DO i_slice = 1,L1B_slice_dim
 echo_noise_energy_slice(i_slice) = echo_noise_energy
 . * slice_noise_fraction(i_slice + 2,mode_index,receiver_index)
 END DO

Step 3: Calculate the total signal-plus-noise energy of the center 10 slices and store it in
echo_energy:

 echo_energy = 0.0

 DO i_slice = 1, NUM_SLICES_PER_SIGMA0
 egg_noise_fraction = egg_noise_fraction
 . + slice_noise_fraction(i_slice + 1,mode_index,receiver_index)
 echo_energy = FLOAT(power_DN(i_slice + 1)) + echo_energy
 END DO

Step 4: Calculate the total noise-only energy of the center 10 slices:

 echo_noise_energy = echo_noise_energy*egg_noise_fraction

CONSTANTS/TABLES

Name Units Description
L1B_Constants The run time constants required by the Level 1B Processor.
slice_noise_fraction Factors used to calculate the noise-only energy for each of

the slices in the echo filter.

Version 3.0 10/5/01 93

INPUTS

Variable Name Units Description
mode_index An identifier indicating the current effective gate width

(1-8).
receiver_index An identifier which indicates whether SES side A/B is

active.
L1B_slice_dim Maximum slice dimension.
bandwidth_ratio The ratio of the rolling average of about 800 load calibration

measurements through the noise filter to the echo filter
power_DN DN Energy measured by the echo filter.
noise_DN DN Energy measured by the noise filter.

OUTPUT

Variable Name Units Description
echo_energy DN Sum of signal-plus-noise energy in the center 10

slices in the echo filter.
echo_noise_energy_slice DN Noise-only energy in each slice in echo filter
echo_noise_energy DN Sum of Noise-only energy in the center 10 slices in

the echo filter.

REFERENCES

[1] Lou, Shu-Hsiang and Yong Liu, “SeaWinds/QuikSCAT High and Low Resolution On-
orbit Calibration and Noise,” IOM 3347-98-019, March 27, 1998.

Version 3.0 10/5/01 94

SeaWinds Algorithm Specification

TITLE: Compute the Radar Backscattering Coefficient
SUBMODULE: Energy Detection
MODULE: SeaWinds Sigma0 and Kp Algorithm
CODE: L1B.3.4.3
VERSION: 2.0
DATE: 10/31/99
AUTHOR: Kyung Pak
SUBROUTINE: Est_Signal_Energy
LANGUAGE: FORTRAN
HERITAGE: Est_Echo_Return_Energy (SeaWinds ATB L1B.3.2.1)
__

L1B.3.4.3 Est_Signal_Energy

PURPOSE

This subroutine calculates the signal-only energy in the echo filter in data number units
(DN).

BACKGROUND

QuickSCAT/SeaWinds instrument measures the signal-plus-noise energy in both echo
and noise filters. In order to obtain the backscattering coefficient, sigma0 , noise-only energy of
the echo filter must be estimated and subtracted from the signal-plus-noise energy. The noise-
only energy has been estimated in Est_Noise_Energy.F (L1B.3.4.2). The signal-only energy of
the pulse in the echo filter can be obtained using the following relation

Equation for the whole pulse:

Pe = Ps + Ne (1)

Pe = signal-plus-noise energy in the echo filter.
Ne = noise-only energy in the echo filter.
Ps = signal-only energy in the echo filter.

Equations for the individual slices:

The procedure for calculating the signal-only energy for individual slices is

Pe ,i = Ps,i + N e,i (2)

Version 3.0 10/5/01 95

PROCESSING

Step 1: Calculate signal-only energy for the whole pulse by using equation (1):

 signal_energy = echo_energy - echo_noise_energy

Step 2: Calculate the signal-only energy for the center 8 slices using equation (2):

 DO i_slice = 1,L1B_slice_dim ! 8 center slices.

 signal_energy_slice(i_slice) = power_DN(i_slice + 2)
 - echo_noise_energy_slice(i_slice)

 END DO

INPUTS

Variable Name Units Description
L1B_slice_dim Maximum slice dimension.
power_DN DN Energy measured by the echo filter.
echo_energy DN Sum of signal-plus-noise energy in the center 10

slices in the echo filter.
echo_noise_energy_slice DN Noise-only energy in each slice in echo filter
echo_noise_energy DN Sum of Noise-only energy in the center 10 slices in

the echo filter.

OUTPUT

Variable Name Units Description
signal_energy_slice DN Signal-only energy in each slice of the echo filter .
signal_energy DN Sum of the signal-only energy in the center 10 slices.

REFERENCES

[1] Lou, Shu-Hsiang and Yong Liu, “SeaWinds/QuikSCAT High and Low Resolution On-
orbit Calibration and Noise,” IOM 3347-98-019, March 27, 1998.

Version 3.0 10/5/01 96

SeaWinds Algorithm Specification

TITLE: Compute the Radar Backscattering Coefficient
SUBMODULE: Energy Detection
MODULE: SeaWinds Sigma0 and Kp Algorithm
CODE: L1B.3.4.4
VERSION: 2.0
DATE: 10/31/99
AUTHOR: Kyung Pak and Angela Zhang
SUBROUTINE: Est_SNR
LANGUAGE: FORTRAN
HERITAGE: Est_SNR (SeaWinds ATB L1B.3.2.2)
__

L1B.3.4.4 Est_SNR

PURPOSE

This subroutine calculates the ratio of the signal power to the thermal noise power within
the echo detection bandwidth (SNR). The SNR is used to calculate the normalized standard
deviation of the echo energy, Kpc.

BACKGROUND

QuickSCAT/SeaWinds radar measures backscattered energy from the earth surface. The
measurement is noisy due to instrument thermal noise and signal fading effects. An accurate
noise estimation must be made in order to optimize the maximum likelihood estimator-based
wind retrieval algorithm. A parameter used to describe the magnitude of the noise is Kpc. This
parameter is a function of the signal to noise ratio. The noise-only energy was estimated in
Est_Noise_Energy.F (L1B.3.4.2) and the signal-only energy was estimated in
Est_Signal_Energy.F (L1B.3.4.3). This subroutine calculates the SNR.

For the whole pulse, the echo channel measures the signal-plus-noise energy

Pe = Ps + Ne (1)

The ratio of the signal-only energy to the noise-only energy gives

SNR =
Ps

N e

(2)

Pe = signal-plus-noise energy in the echo filter.
Ne = noise-only energy in the echo filter.

Version 3.0 10/5/01 97

Ps = signal-only energy in the echo filter.

The procedure for calculating the signal-only energy for individual slices is

Pe ,i = Ps,i + N e,i (3)

SNR =
Ps,i

Ne, i

(4)

Pe,i = signal-plus-noise energy for a slice in the echo filter.
Ne,i = noise-only energy for a slice in the echo filter.
Ps,i = signal-only energy for a slice in the echo filter.

PROCESSING

Step 1: Calculate the SNR for the whole pulse:

 SNR = 10.*LOG10(signal_energy / echo_noise_energy)

Step 2: Calculate the SNR for the center 8 slices:

 DO i_slice = 1,L1B_slice_dim
slice_SNR(i_slice) =
 10.*LOG10(signal_energy_slice(i_slice)/echo_noise_energy_slice(i_slice))

 END DO

Processing Note:

Since the SNR calculation step involves taking the logarithm of a ratio, a special care
must be taken to guarantee that the code will not terminate due to a fatal error. Three possible
fatal errors are: division by zero, argument of the logarithm is negative, or argument of the
logarithm is zero.

The following table summarizes the error processing approach:

error event processing flag associated with error event
argument < 1.0e-30 -300 dB none
argument > 1.0e+30 300 dB none
argument is negative ABS(arg) The negative sigma0 bit of the sigma0_qual_flag

Version 3.0 10/5/01 98

CONSTANTS/TABLES

Name Description
L1B_Constants The run time constants required by the Level 1B Processor.

INPUTS

Variable Name Units Description
L1B_Constants The run time constants required by the Level 1B

Processor.
L1B_slice_dim Maximum slice dimension.
echo_noise_energy_slice DN Noise-only energy in each slice in echo filter
echo_noise_energy DN Sum of Noise-only energy in the center 10 slices in

the echo filter.
signal_energy_slice DN Signal-only energy in each slice of the echo filter .
signal_energy DN Sum of the signal-only energy in the center 10 slices.

OUTPUT

Variable Name Units Description
slice_qual_flag Bit flags which indicate the quality of the data for each

slice.
sigma0_qual_flag Bit flag which indicates the quality of the data for a pulse.
slice_SNR dB The ratio of signal to noise for a slice.
SNR dB The ratio of signal to noise for a whole pulse.

REFERENCES

[1] NASA/JPL Scatterometry Processing Algorithm and Analysis Group, “Science
Algorithm Specification for SeaWinds”, JPL, October 20, 1996.

Version 3.0 10/5/01 99

SeaWinds Algorithm Specification

TITLE: Compute the Radar Backscattering Coefficient
SUBMODULE: Energy Detection
MODULE: SeaWinds Sigma0 and Kp Algorithm
CODE: L1B.3.4.5
VERSION: 2.0
DATE: 10/31/99
AUTHOR: Kyung Pak and Angela Zhang
SUBROUTINE: Est_Pr_Pt_Ratio
LANGUAGE: FORTRAN
HERITAGE: Est_Ratio_Echo_Trans_Energy (L1B.3.2.4)
__

L1B.3.4.5 Est_Pr_Pt_Ratio

PURPOSE

This subroutine calculates the ratio of the signal-only energy (Pr) to the transmitted
energy (Pt), Pr_Pt_ratio. Instead of calculating Pr and Pt individually, this algorithm evaluates
the ratio using the echo return energy at the output of the receiver and a normalization factor Pcal .

BACKGROUND

The conventional way to calculate sigma0 from the radar equation requires a separate
evaluation of the transmit energy and the receiver energy. The SeaWinds design applies a loop-
back calibration scheme. The unique feature of this calibration technique provides a direct way to
evaluate Pr / Pt, rather than to evaluate the transmit energy and the receiver energy separately.

The value of this ratio can be calculated from the detected echo energy using the
following equation:

Pr

Pt

=
Ps

LsysPs _cal
(1)

Lsys =
Lbias L23

L13L21

Lcal

Lop

 (2)

where

Loss Factors:
L13 = Receiver path insertion loss.

Version 3.0 10/5/01 100

L21 = Transmitter path insertion loss.
L23 = Calibration path insertion loss.
Lcal/Lop = Calibration path attenuator loss.
Lbias = Bias between the modeled and measured loss factor.
Ps_cal = Normalizing factor derived from the calibration frames, which is

obtained in the algorithm Get_Cal_Data.F (L1B.3.3.1).

The signal-only energy Ps is estimated in Est_Signal_Energy (L1B.3.4.3). Both of these are
passed via subroutine arguments to this algorithm.

PROCESSING

Step 1: Calculate the Pr_Pt_ratio for the whole pulse:

 Pr_Pt_ratio = 10. * LOG10(signal_energy / (L_sys*signal_energy_cal))

Step 2: Calculate the Pr_Pt_ratio for the center 8 slices:

 DO i_slice = 1,L1B_slice_dim
 slice_Pr_Pt_ratio(i_slice)
 . = 10. * LOG10 (signal_energy_slice(i_slice) /(L_sys*signal_energy_cal))
 END DO

Processing Note:

Since the Pr_Pt_ratio calculation step involves taking the logarithm of a ratio, a special
care must be taken to guarantee that the code will not terminate due to a fatal error. Three
possible fatal errors are: division by zero, argument of the logarithm is negative, or argument of
the logarithm is zero.

The following table summarizes the error processing approach:

error event processing flag associated with error event
argument < 1.0e-30 -300 dB none
argument > 1.0e+30 300 dB none
argument is negative ABS(arg) The negative sigma0 bit of the sigma0_qual_flag

CONSTANTS/TABLES

Name Description
L1B_Constants The run time constants required by the Level 1B Processor.

Version 3.0 10/5/01 101

INPUTS

Variable Name Units Description
L1B_slice_dim Maximum slice dimension.
signal_energy_slice DN Signal-only energy in each slice of the echo filter .
signal_energy DN Sum of the signal-only energy in the center 10 slices.
L_sys dB The SES calibration loss factor.
Signal_energy_cal_A DN Calibration energy of beam A pulse.
Signal_energy_cal_B DN Calibration energy of beam B pulse.

OUTPUT

Variable Name Units Description
slice_Pr_Pt_ratio dB The ratio of the echo return power to the transmit power

for each slice.
Pr_Pt_ratio dB The ratio of the echo return power to the transmit power.

REFERENCE

[1] NASA/JPL Scatterometry Processing Algorithm and Analysis Group, “Science
Algorithm Specification for SeaWinds”, JPL, October 20, 1996.

Version 3.0 10/5/01 102

SeaWinds Algorithm Specification

TITLE: Compute the Radar Backscattering Coefficient
SUBMODULE: Sigma0 and Variance Estimation
MODULE: SeaWinds Sigma0 and Kp Algorithm
CODE: L1B.3.5.1
VERSION: 2.0
DATE: 10/31/99
AUTHOR: Kyung Pak, Vincent Hsiao, and Angela Zhang
SUBROUTINE: Calculate_X_Factor.F
LANGUAGE: FORTRAN
HERITAGE: Calculate_Correction_Factor (L1B.3.3.1)
__

L1B.3.5.1 Calculate_X_Factor

PURPOSE

This subroutine determines the correction factor (X factor) derived from the true,
integrated, antenna and digital filter gain patterns. This algorithm assumes that the X factor
values were not precalculated by earlier algorithms such as Compute_X_Loc (L1B.2.4.6). In the
event the geometry part of the X factor values were calculated by Compute_X_Loc, this
subroutine only combines the calibration part of the X factor with that of the geometry part of the
X factor.

BACKGROUND

A backscattering coefficient, sigma0, and a signal-only energy measurement, Ps, is
related by the radar equation:

Ps =

PtGr()λ2Gp
2

4π()3 Lsys

1

La
2 Lw

2

 d2 ρ

r σ 0 (x, y)
F fb

ρ
r ()()

R4 ρ
r ()∫∫ (1)

where

λ = Wavelength of the transmitted pulse.
Gp = Antenna peak gain.
Ps = Signal-only energy for an entire footprint in the echo channel.
F(fb(r)) = Digital filter response of an entire footprint. The antenna gain pattern is

 also absorbed in this term.
PtGr = Transmitted power-receiver gain product.

Version 3.0 10/5/01 103

σ0(x,y) = Scattering coefficient at position (x,y) on surface.
R(r) = Slant range to a point (x,y) on surface.
Lw = One way platform waveguide loss (0.21 dB inner beam,

0.24 dB outer beam).
La = Atmospheric loss.

and

Lsys =
Lbias L13L21

L23

Lop

Lcal

 (2)

where

Lbias = Bias between the modeled and measured loss factor (0.0 dB for receiver
A and 0.08 dB for receiver B)

and the loss factor terms are

L13 = Receiver path insertion loss.
L21 = Transmitter path insertion loss.
L23 = Calibration path insertion loss.
Lcal/Lop = Calibration path attenuator loss.

Under the assumption that s0 is constant over the footprint, the radar equation can be re-arranged
and simplified in terms of the X factor.

σ0 =
Ps

X (3)

The X factor is a normalization factor which can be separated into two parts X = Xcal Xint

where

Xcal ≡
λ3

4π()3 Gp
2 1

La
2 Lw

2

 Lbias L23

L13L21

Lcal

Lop

 Ps_ cal (4)

X int ≡ d 2 ρ

r
F fb

ρ
r ()()

R4 ρ
r ()∫∫ (5)

and

Ps_cal = Signal-only energy of the loop-back calibration pulse.

Version 3.0 10/5/01 104

The signal-only energy Ps is estimated in Est_Signal_Energy (L1B.3.4.3) and Xcal is calculated in
Est_Calibration_X (L1B.3.3.2). Both of these are passed via subroutine arguments to this
algorithm. The individual slice and “egg” X int terms are calculated in this subroutine and
combined with Xcal to give the total X. The total X are passed on to the subsequent algorithms.

The calculation of X int requires integrating the antenna pattern and digital signal
processor responses over the footprint. The computation of the X int for each measurement is CPU
time consuming and is more than what the ground processing can handle. In
QuikSCAT/SeaWinds, X int is pre-computed and tabularized to significantly reduce the
computation time. The X int table is generated in two steps. First, a nominal X int table is generated
based on a nominal spacecraft orbit. Perfect Doppler/range tracking algorithm and beam pointing
are assumed. This table is called the nominal X int table, Xnom. However, the actual orbit,
Doppler/range tracking, and beam pointing are different than the nominal orbit, ideal
Doppler/range tracking, and perfect beam pointing. Therefore, in the second step the X int values
are generated for a range of possible orbits, Doppler/range tracking errors, and attitude errors.
Then the differences in the X int and Xnom tables as a function of baseband frequency error (or
baseband frequency shift) are fitted with a 3rd order polynomial (see the cell l ocation algorithm
section for details). The coeff icients of this polynomial fit are stored in a Xcoef table. The Xcoef

table, when used in conjunction with the Xnom table, compensates for the difference in the Xnom

and the actual Xint values.

The usage of the Xnom and Xcoef is as follows

X int = Xnom + A∆f + B∆f 2 + C∆f 3
(6)

where the A, B, and C coeff icients are the entries in the Xcoef table. The ∆f term is the baseband
frequency shift between the nominal geometry and the actual geometry. It is calculated by the
following equation

∆f = − fc
n − fref

n − fs + fs' + fproc − µ(Dref
n − Dc

n) + f topo (7)

where

fc
n = Commanded Doppler frequency (Hz).

fref
n = Reference vector Doppler frequency (Hz).

fs = Modulation chirp start frequency (Hz).

fs' = Modulation de-chirp start frequency (Hz).

fproc = -1.06 Hz.

µ = Frequency modulation chirp rate (Hz/sec).
Dref

n = Reference vector range delay (sec).

Dc
n = Commanded range delay (sec).

f topo = Topographic frequency shift correction (Hz).

Version 3.0 10/5/01 105

The topographic correction algorithm is

f topo = S *h (8)

where

S = Pre-calculated frequency correction table due to topography (Hz/m).
h = Earth topography map (m).

The baseband frequency shift term without the ftopo term is calculated in the
Compute_Cell_Geometry (L1B.2.4.0) module and passed to this algorithm.

PROCESSING

Step 1: Calculate the indexes necessary to read the Xnom, Xint, and S tables and the topo map.
Determine orbit_step and angle.

 orbit_step = num_orbit_steps * (orbit_time, orbit_period) / rev_orbit_period
 int_orbit_step = INT(orbit_step)
 int_orbit_step = int_orbit_step + 1
 next_orbit_step = int_orbit_step + 1

 angle = num_azimuths*(antenna_azimuth)/360.
 int_angle = INT(angle)
 int_angle = int_angle + 1
 next_angle = int_angle + 1

Step 2: Determine the bilinear interpolation coefficients a, b, c, and d for the tables.

 a = orbit_step - int_orbit_step
 b = 1. - a
 c = angle - int_angle
 d = 1.- c

Step 3: Interpolate the S table for topography correction and add the term to the total
frequency shift. Height is in meters and S is in bin numbers (normalized frequency)/m.

 s_factor = S_Table(beam_index,int_angle,int_orbit_step,mode_index)*b*d
 . + S_Table(beam_index,next_angle,int_orbit_step,mode_index)*b*c
 . + S_Table(beam_index,int_angle,next_orbit_step,mode_index)*a*d
 . + S_Table(beam_index,next_angle,next_orbit_step,mode_index)*a*c

 i_lon = MOD(NINT(cell_lon / 0.25),1440) + 1

Version 3.0 10/5/01 106

 i_lat = NINT((cell_lat + 90.)/0.25) + 1
 height = MAX(0.0,Topo_Height(i_lon,i_lat))

 frequency_shift = frequency_shift + s_factor*height

Step 3: Interpolate the Xnom table for the individual slices.

 DO i_slice=1,num_slices_only
 X_factor(i_slice) =
 . (X_nom(i_slice,beam_index,int_angle,int_orbit_step,mode_index))*b*d
 . + (X_nom(i_slice,beam_index,next_angle,int_orbit_step,mode_index))*b*c
 . + (X_nom(i_slice,beam_index,int_angle,next_orbit_step,mode_index))*a*d
 . + (X_nom(i_slice,beam_index,next_angle,next_orbit_step,mode_index))*a*c
 DO i_coef = 1,num_X_coeffs
 X_slice_coef(i_coef,i_slice) =
 . X_coef(i_coef,i_slice,beam_index,int_angle,int_orbit_step,mode_index)*b*d
 . + X_coef(i_coef,i_slice,beam_index,next_angle,int_orbit_step,mode_index)*b*c
 . + X_coef(i_coef,i_slice,beam_index,int_angle,next_orbit_step,mode_index)*a*d
 . + X_ coef(i_coef,i_slice,beam_index,next_angle,next_orbit_step,mode_index)*a*c
 END DO

 END DO

Step 4: Calculate the total Xint for the individual slices using equation (6).

 DO i_slice = 1,num_slices_only
 X_factor(i_slice) = (10.**((X_factor(i_slice)
 . + X_slice_coeff(1,i_slice)
 . + X_slice_coeff(2,i_slice)*frequency_shift
 . + X_slice_coeff(3,i_slice)*frequency_shift**2
 . + X_slice_coeff(4,i_slice)*frequency_shift**3)/10.))*X_cal
 END DO

Step 5: Calculate the total Xint for the eggs following the same procedure as in slices.

 X_egg =
 . X_table(egg_index,beam_index,
 . int_angle,int_orbit_step,mode_index)*b*d
 . + X_table(egg_index,beam_index,
 . next_angle,int_orbit_step,mode_index)*b*c
 . + X_table(egg_index,beam_index,
 . int_angle,next_orbit_step,mode_index)*a*d
 . + X_table(egg_index,beam_index,next_angle,
 . next_orbit_step,mode_index)*a*c

Version 3.0 10/5/01 107

 DO i_coef = 1,num_X_coeffs
 X_factor_egg_coeff(i_coeff) =
 . X_coeffs(i_coeff,egg_index,beam_index,
 . int_angle,int_orbit_step,mode_index)*b*d
 . + X_coeffs(i_coeff,egg_index,beam_index,
 . next_angle,int_orbit_step,mode_index)*b*c
 . + X_coeffs(i_coeff,egg_index,beam_index,
 . int_angle,next_orbit_step,mode_index)*a*d
 . + X_coeffs(i_coeff,egg_index,beam_index,
 . next_angle,next_orbit_step,mode_index)*a*c
 END DO

 X_factor_egg = (10.**((X_egg + X_egg_coef(1)
 + X_egg_coef(2)*frequency_shift
 + X_egg_coef(3)*frequency_shift**2
 +X_egg_coef(4)*frequency_shift**3)/10.))*X_cal

Step 6: Convert X to dB scale.

CONSTANTS/TABLES

Name Description
L1B_Constants The run time constants required by the Level 1B Processor.

INPUTS

Variable Name Units Description
L1B_slice_dim Maximum slice dimension.
mode_index An identifier indicating the current effective gate width

(1-8).
beam_index Inner/outer beam id (1/2).
orbit_time counts The current orbit time.
rev_orbit_period sec The time required for the spacecraft to complete one

complete orbit
antenna_azimuth deg Antenna azimuth angle.
frequency_shift Hz The shift in the baseband frequency of a pulse due to errors

in the Doppler Binning Table and the spacecraft attitude
measurement.

X_cal dB The beam A/B radiometric calibration component of the X-
factor.

bb_freq_off_corr A correction to the calculated change in baseband
frequency. This correction reflects biases in the baseband
frequency which are due to perturbations in the spacecraft
attitude and the antenna look angles.

Version 3.0 10/5/01 108

X_Factor_coeffs The nominal X table correction factors for individual slices.
The 9th slice entry is for the whole egg (spot).

X_Factor_Table (1/m)
2

A table containing the geometric factor in the radar equation
that is based on the calculation of an integral.

Topo_Height m Earth topography map table.
S_Table 1/m A correction coefficient table used to compensate a

baseband frequency error.

OUTPUT

Variable Name Units Description
X_factor dB The complete conversion factor from scatterometer received signal

energy to sigma0 value for each slice.

REFERENCES

[1] NASA/JPL Scatterometry Processing Algorithm and Analysis Group, “Science
Algorithm Specification for SeaWinds”, JPL, October 20, 1996.

Version 3.0 10/5/01 109

SeaWinds Algorithm Specification

TITLE: Compute the Radar Backscattering Coefficient
SUBMODULE: Sigma0 and Variance Estimation
MODULE: SeaWinds Sigma0 and Kp Algorithm
CODE: L1B.3.5.2
VERSION: 2.0
DATE: 10/31/99
AUTHOR: Kyung Pak and Angela Zhang
SUBROUTINE: Calculate_Sigma0.F
LANGUAGE: FORTRAN
HERITAGE: Calculate_Sigma0 (SeaWinds ATB L1B.3.4.1)
__

L1B.3.5.2 Calculate_Sigma0

PURPOSE

This subroutine calculates the radar backscattering coefficient, sigma0.

BACKGROUND

The radar backscattering coefficient, σ0, and the signal-only energy measurement, Ps, are
related by the radar equation. In this section, only a brief description is outlined. For a complete
description, refer to the algorithm Calculate_X_Factor.F (L1B.3.5.1). Under the assumption that
σ0 is constant over the footprint, the radar equation can be re-arranged in terms of the X-factor.

σ0 =
Ps

X (1)

The X-factor is a normalization factor which can be separated into two parts X = Xcal Xint . Xcal

is the instrument calibration measurement calculated in Est_Calibration_X (L1B.3.3.2) and
passed to Calculate_X_Factor (L1B.3.5.1). In Calculate_X_Factor the Xint term is calculated and
combined with Xcal. The combined X factor is passed to this subroutine. The signal-only energy
Ps is estimated in Est_Signal_Energy (L1B.3.4.3) and passed via subroutine arguments to this
algorithm.

PROCESSING

Step 1: Calculate the sigma0 for the individual slices by first checking to see whether the
individual cell location algorithm has converged. For the located slices proceed with the
sigma0 calculation by:

Version 3.0 10/5/01 110

a) calculate the slice_sigma0 values using equation (3)
b) check if slice_sigma0 value is negative. Then clear the negative sigma0 bit flag of the

slice_qual_flag for positive valued sigma0s.

 DO i_slice = 1, L1B_slice_dim

 IF (slice_qual .EQ. slice_located) THEN
 slice_sigma0(i_slice) = signal_energy_slice(i_slice)/ (X_factor(i_slice))

 IF(slice_sigma0(i_slice) .GE. 0.) THEN
 slice_qual_flag = My_SWS_Set_Flag

 (slice_qual_flag,slice_sigma0_sign_flag,slice_sigma0_not_negative)
 ELSE
 slice_sigma0(i_slice) = - slice_sigma0(i_slice)
 END IF
 slice_sigm0(i_slice) = 10.* LOG10 (slice_sigma0(i_slice))

 ELSE
 slice_sigma0(i_slice) = 0.

 END IF

 END DO

Step 2: Calculate the sigma0 for the whole pulse (egg) as in Step 1:

a) calculate the slice_sigma0 values using equation (3)
b) check if slice_sigma0 value is negative. Clear the negative sigma0 bit flag of the

sigma0_qual_flag for positive valued sigma0s.

 sigma0 = signal_energy/X_factor_egg

 IF(sigma0 .GE. 0.0) THEN
 sigma0_qual_flag =My_SWS_Set_Flag

 (sigma0_qual_flag,SIGMA0_SIGN_FLAG,SIGMA0_NOT_NEGATIVE)
 ELSE
 sigma0 = - sigma0
 END IF

 X_factor_egg = 10.*log10(X_factor_egg)

 sigma0 = 10.*log10(sigma0)

Step 3: Set the usability flag by checking the range of sigma0 and instrument temperature values.

 IF ((sigma0 .LT. MAX_SIGMA0) .AND. (sigma0 .GT. MIN_SIGMA0)) THEN

Version 3.0 10/5/01 111

sigma0_qual_flag = My_SWS_Set_Flag
 . (sigma0_qual_flag,SIGMA0_RANGE,SIGMA0_RANGE_ACCEPTABLE)

 END IF

 IF (sigma0_qual .EQ. TEMP_RANGE_IN_RANGE) THEN

 sigma0_qual_flag = My_SWS_Set_Flag
 . (sigma0_qual_flag,SIGMA0_USABLE_FLAG,SIGMA0_USABLE)

 END IF ! temp. check

 END IF ! sigma0 range check

Processing Note:

Since the sigma0 is expressed in dB units, care must be taken to guarantee that the code
will not terminate due to a fatal error. Three possible fatal errors are: argument of the logarithm
is infinite, negative, or zero.

The following table summarizes the error processing approach:

error event solution flag associated with error event
argument < 1.0e-30 -300 dB none
argument > 1.0e+30 300 dB none
argument is negative ABS(arg) The negative sigma0 bit of the sigma0_qual_flag

INPUTS

Variable Name Units Description
L1B_slice_dim Maximum slice dimension.
signal_energy_slice DN Signal-only energy in each slice of the echo filter .
signal_energy DN Sum of the signal-only energy in the center 10 slices.
x_factor dB The complete conversion factor from scatterometer energy

to sigma0 value for each slice of a sigma0 cell.
X_factor_egg dB The X-factor for a pulse.
slice_qual_flag Bit flags which indicate the quality of the data for each

slice.
sigma0_qual_flag Bit flag which indicate the quality of the data for a pulse.

OUTPUTS

Variable Name Units Description
slice_sigma0 dB Radar backscatter for each slice.
sigma0 dB Radar backscatter for a pulse.

Version 3.0 10/5/01 112

REFERENCE

[1] NASA/JPL Scatterometry Processing Algorithm and Analysis Group, “Science
Algorithm Specification for SeaWinds”, JPL, October 20, 1996.

Version 3.0 10/5/01 113

SeaWinds Algorithm Specification

TITLE: Compute the Radar Backscattering Coefficient
SUBMODULE: Sigma0 and Variance Estimation
MODULE: SeaWinds Sigma0 and Kp Algorithm
CODE: L1B.3.5.3
VERSION: 2.0
DATE: 10/31/99
AUTHOR: Kyung Pak and Angela Zhang
SUBROUTINE: Calculate_Kpc_Coeff.F
LANGUAGE: FORTRAN
HERITAGE: None
__

L1B.3.5.3 Calculate_Kpc_Coeff

PURPOSE

Compute Kpc coefficients which are used in level 2B processor to estimate the weighting
factors for wind retrieval algorithm.

BACKGROUND

When a scatterometer measures the backscattering coeff icient, sigma0, of the ocean
surface, it does so with imperfect precision. Due to the instrument thermal noise and radar signal
fading effects, the estimates of sigma0 will be noisy. In scatterometry, measurement variations of
this type are referred to as “communication noise”. A parameter commonly used to indicate the
magnitude of the communication noise is Kpc, which is defined as the normalized standard
deviation of the echo return energy:

kpc =
{Var[Ps]}

2

Ps

(1)

where Ps is the expected echo return energy and Var[Ps] is the variance of the echo return
energy.

Kpc is a function of the instrument signal processing parameters and the return signal-
only to noise-only energy ratio (SNR). It can be written as:

kpc2 = kpc_ A +
kpc_B

SNR
+

kpc _C

SNR2
. (2)

Version 3.0 10/5/01 114

Kpc_A, kpc_B, and kpc_C are known as the Kpc coefficients. They are functions of the
instrument antenna pattern, illumination geometry, modulation format, transmit pulse
modulation, and receiver filter characteristics. There are two models to estimate the Kpc
coefficients: analog and digital.

Analog Kpc Model

The analog Kpc coefficient derivation is based on an analog signal processing system, as
the one employed in Seasat scatterometer [2]. This approach assumes that the bandwidth of each
individual slices are narrow so that the power spectral density is flat over the slice bandwidth.
Then it can be shown that the Kpc_A, Kpc_B, and kpc_C can be well-approximated by the
following set of analog expressions

kpc _ A =
1

BsTp

(3)

kpc _ B =
2

BsTg

(4)

kpc _C =
1

Bs Tg

1+
Bs

Bn

 (5)

where,

Bs = Bandwidth of the individual slices.
Bn = Bandwidth of the noise filter (1MHz nominal).
Tp = Transmit pulse width.
Tg = Range gate width.

The egg Kpc formula results from a similar derivation and approximations

kpc _ A =
1

B3dBTp

(6)

kpc _ B =
2

BeggTg

(7)

kpc _C =
1

BeggTg

1+
Begg

Bn

 (8)

where

B3dB = The 3dB bandwidth of the egg .
Begg = The sum of the individual slice bandwidths comprising an egg (nominally there are

10 slices in an egg).

Version 3.0 10/5/01 115

Digital Kpc Model

In the digital Kpc formulation, the shape of the power spectral density and the digital
filter effects are carefully modeled. This results in nearly constant Kpc_B and Kpc_C values
which can be well-approximated by equations (4)-(5) and (7)-(8). The digital Kpc_A varies about
15 % as a function of antenna azimuth angle. The equation is much more complicated than the
analog expression, making pulse-by-pulse calculations impractical. Thus, an approximation
which results in a simpler Kpc_A equation or a tabularized Kpc_A values for a quick look up is
preferred in the level 1B processing. A simple approximation is to use the analog equations (3)
and (6), and accept the maximum of 15% error. More accurate approach is to tabularize the
Kpc_A coefficient as a function of orbit position, azimuth angle, beam number, and slice
number.

In this subroutine, the analog equation approximation algorithm is implemented as the
nominal algorithm since the Kpc_A table is not yet available. The Kpc_A table look-up approach
will be the alternate algorithm. The table look up approach is more accurate of the two, and is the
preferred method once the Kpc_A table is available.

Kpc_A is computed at discrete scan angles (2 deg.) and orbit positions (10 deg.) to form a
table of dimension (180,36). This algorithm retrieves kpc_A for a given scan angle and orbit
position by looking up the nearby values in the table and using bilinear interpolation to determine
the appropriate value.

The indices for argument of latitude are calculated by:

i_orb_left = arg_lat /10 (3)
i_orb_right = i_orb_left+1.

The indices of antenna azimuth angle are calculated by:

i_az_left = antenna_azimuth/2 (4)
i_az_right_az_left+1.

The algorithm retrieves the value from the table at the following four locations:

y1= kpc_table(ibeam,i_az_left,i_orb_left)
y2 = kpc_table(ibeam,i_az_right,i_orb_left)
y3 = kpc_table(ibeam,i_az_right,i_orb_right) (5)
y4 = kpc_table(ibeam,i_az_left,i_orb_right).

Then it calculates fractions t and u by

t=(antenna_azimuth-2*float(i_az_left))/2.0 (6)
u=arg_lat - 10.* float(i_orb_left)) /10.0

Version 3.0 10/5/01 116

Finally, it calculates the Kpc_A by

Kpc_A=(1-t)*(1-u)*y1 + t*(1-u)*y2 + t*u*y3 + (1-t)*u*y4 (7)

The QuikSCAT/SeaWinds instrument is designed to be capable of operating at different
resolution modes (effective gate width). Each resolution mode results in a unique set of slice
bandwidth and range gate width which can then be used to calculate Kpc_B and Kpc_C. They are
essentially functions of resolution mode only. In level 1B processor, the Kpc_B and Kpc_C terms
for all resolution modes are pre-calculated and stored in an array for use in the level 2A
algorithms.

PROCESSING

Analog Kpc_A Processing

Step 1: Loop through the slices and calculate the Kpc_A using equation (3)

 DO i_slice = 1,L1B_slice_dim

 slice_qual = My_SWS_Get_Flag(slice_qual_flag,slice_loc_flag)

 IF (slice_qual .EQ. slice_located) THEN

 slice_Kpc_A(i_slice)
= 1./(tx_pulse_width* L1B_Constants.Bs(mode_index)/10.)

 END IF

 END DO

Step 2: Calculate egg Kpc_A using equation (6)

 IF (sigma0_qual .NE. SIGMA0_NOT_USABLE) THEN

sigma0_Kpc_A
= 1./ (tx_pulse_width*BANDWIDTH_3DB(beam_index))

 END IF

Table-driven Kpc_A Processing

Step 1: Orbital indices calculation
compute i_orbit_left and i_orb_right using Eq (3).

Version 3.0 10/5/01 117

Step 2:Antenna azimuth indices calculation
compute i_az_left and i_az_right using Eq (4)

Step 3Retrieval of table values
Retrieve kpc_A values at the grid points using Eq (5)

Step 4:Fractional parts calculation
calculate t and u using Eq. (6)

Step 5: Kpc_A calculation
calculate the value of Kpc_A.

CONSTANTS/TABLES

Name Description
L1B_Constants The run time constants required by the Level 1B Processor.
Kpc_Parameters Coefficients which are used to determine the normalized standard

deviation of the sigma0 measurement due to the statistical nature of
the received signal, or kpc_A.

INPUTS

Variable Name Units Description
L1B_slice_dim Maximum slice dimension.
mode_index An identifier indicating the current effective gate width

(1-8).
beam_index Inner/outer beam id (1/2).
slice_qual_flag Bit flags which indicate the quality of the data for each

slice.
sigma0_qual_flag Bit flag which indicate the quality of the data for a pulse.
range_gate_width sec The range gate width for beam A/B.
tx_pulse_width sec The transmit pulse width.

OUTPUT

Variable Name Units Description
slice_Kpc_A The normalized standard deviation of the slice signal.
sigma0_Kpc_A The normalized standard deviation ofthe whole echo signal.

REFERENCES

[1] NASA/JPL Scatterometry Processing Algorithm and Analysis Group, “Science
Algorithm Specification for SeaWinds”, JPL, October 20, 1996.

Version 3.0 10/5/01 118

[2] Fisher, R., “Standard deviation of scatterometer measurements from space,” IEEE
Transactions on Geoscience and Electronics, Vol. GE-10, No. 2, April 1972.

Version 3.0 10/5/01 119

SeaWinds Scatterometer
Brightness Temperature Algorithm

Module L1B.4.0

ALGORITHM SPECIFICATIONS

AUTHOR: Barry H. Weiss
VERSION: 1.0
DATE: May 15, 2001

Version 3.0 10/5/01 120

SeaWinds Scatterometer Brightness Temperature Algorithm

MODULE L1B.4.0

I. MODULE OVERVIEW

Physical phenomena associated with precipitation have been found to have an adverse
effect on the accuracy of scatterometer measurements. Heavy clouds and light precipitation
cause attenuation of the radar signal. Furthermore, moderate to heavy rain backscatters the radar
signal more than it attenuates it. Moderate to heavy rain can also roughen the ocean surface such
that the backscatter is no longer closely related to the near-surface wind. While deviations of the
scatterometer measurements from the wind speed model function may give an indication that the
measurements are contaminated by rain (see description of Multi-Dimensional Histogram Rain
Flag [MUDH]), radiometer measurements provide an independent observation to assist in this
determination. While the scatterometer was not designed as a radiometer, the 1 MHz noise
channel provides at least a minimal capability for measuring the Ku band brightness temperature.

During the QuikSCAT cal/val phase, it became clear that some wind measurements show
the effects of precipitation. A means of detecting this contamination was needed so that
measurements with a high probability of rain could be flagged. Data users who choose to employ
rain flagged data should then acknowledge the possibility that the observations are corrupted.

The same precipitation conditions that generate attenuating atmospheric conditions for
scatterometer measurements also generate dramatic increases in the apparent brightness
temperatures at microwave frequencies over bodies of water. Thus, apparent brightness
temperatures can provide a means to detect the presence of precipitation. Of course, any
apparent brightness temperature observations that might be used to detect rainfall need to be both
contemporaneous and collocated with the scatterometer data. These narrow time and space
requirements led to the idea that the scatterometer measurements, while not ideal, could be used
to generate useful apparent brightness temperatures for the purpose of flagging wind
measurements for rain contamination.

The algorithm in this module employs the noise channel and echo channel measurements
from the scatterometer to produce greybody emission measures at both vertical and horizontal
polarization. The algorithm subtracts the echo signal from the corresponding noise channel
measurement. Once the energy associated with the scatterometer signal has been removed, the
algorithm accounts for other factors that might contribute to the residual noise signal. These
include emissions from waveguide losses, leakage from the Travelling Wave Tube Amplifier
(TWTA) and internal receiver noise.

The following block diagram displays the expected instrument loss factors and energy sources
that contribute the residual noise from which the brightness temperatures are extracted.

Version 3.0 10/5/01 121

SeaWinds Radiometer Diagram - Chan-A Receiving

Beam-Select
SW Loss

(Lbeam_sel_sw)

TR SW Loss
(Ltran_rcv_sw)

Beam-Select
SW Isolation

(Ibeam_sel_sw)

Σ

Wide-band
Recvr Gain

(gn)

Narrow-band
Recvr Gain

(ge)

Noise Chan.
Output Power

Echo Chan.
Output Power

TWTA Noise Output
(transmitter leakage)

Tap

Tap

Recvr-Protect
SW Loss

(Lrcv_prot_sw)

Σ

Σ

Tr, Receiver Noise

 (Noise Chan)

Tr, Receiver Noise

 (Echo Chan)

Beam-A

Beam-B

Input to antenna

Input to SES

Input to receiver

Feed, Rotary Joint & WG
Loss - (Lwg_rj_h)

Feed, Rotary Joint & WG
Loss - (Lwg_rj_v)

TWTA Noise Output
(transmitter leakage)

Antenna Assembly

Switch Assembly Receiver
Physical Temperature

Trcv_prot_sw

Physical Temperature
Trcv

Physical Temperature
Trj

Version 3.0 10/5/01 122

II. FUNCTIONAL FLOW DESCRIPTION

The design divides the algorithm into two major segments.

Generate Parameters for Brightness Temperature Calculation

This segment computes those parameters that are characteristic of all observations in a
single telemetry frame. Several of these parameters are smoothed over a time series of
measurements before algorithmic calculations are applied. Only one sequence of Level 1B
Processor code views data over the entire rev, and can thus calculate parameters over a period of
time within the rev. This sequence of Level 1B code uses the Calibration Pulse Product, which is
generated in the Level 1A Processor, to gain access to data over of the entire time span of the rev.
 Thus, the Level 1B Processor calls this brightness temperature preparation algorithm within a
sector of the code that processes the Calibration Pulse Product data.

Calculate Brightness Temperatures

This segment calculates an individual brightness temperature for each measurement pulse
in each telemetry frame. The Level 1B Processor calls this algorithm from the Compute Sigma0
and Kp module.

Version 3.0 10/5/01 123

SeaWinds Algorithm Specification

TITLE: Generate Parameters for Brightness Temperature Calculation
SUBMODULE:
MODULE: Calculate Scatterometer Brightness Temperature
CODE: L1B.4.1.1
VERSION: 1.0
DATE: 05/03/01
AUTHOR: Barry Weiss
SUBROUTINE: Calculate_Tb_Parameters
LANGUAGE: Fortran 90
HERITAGE: None

L1B.4.1.1 Calculate_Tb_Parameters

PURPOSE

This algorithm calculates a set of common parameters that will be used to generate
apparent brightness temperatures for all of the measurement pulses in a single telemetry frame.

BACKGROUND

This algorithm determines representative noise temperature biases and a representative
instrument loss factor for each telemetry frame. The Level 1B algorithm subsequently employs
these quantities to estimate that portion of the noise signal that is due to greybody emision from
the earth’s surface.

The temperature biases and loss factor are based on three spacecraft temperature
measurements. These are the receiver temperature Trcv, the rotary joint temperature Trj and the
receiver protect switch temperature Trcv_prot_sw. The Level 1B Processor reads these data from the
Calibration Pulse Product, which is generated by the Level 1A Processor. Before the calculation
of the noise bias and loss factor, the algorithm smoothes each of these input temperature
measurements over time. The code applies a rolli ng average of the temperature measurements
that were acquired between one minute before and one minute after the current telemetry frame
to smooth each of these temperatures. The tabular variable qscat_rad_temp_dim stores the
number of measurements that normally would span the requisite two minute period. In the
current implementation, qscat_rad_temp_dim is 78.

Upon completion of the rolli ng averages, the algorithm computes the temperature biases
and the loss factor that are used in the final calculation of the apparent brightness temperature.
The loss factor is the receiver protect switch loss Lrcv_prot_sw. This loss factor calculation (linear
power ratio) is based on a second order polynomial fit of the averaged receiver protect switch

Version 3.0 10/5/01 124

temperature.

Lrcv_prot_sw = Arcv_prot_sw2 * T rcv_prot_sw
2 + Arcv_prot_sw1* T rcv_prot_sw

 + Arcv_prot_sw0 (1)

The first temperature bias is the receiver radiometric noise temperature Trcv_rad, which is
based on the averaged receiver temperature:

Trcv_rad = (nf –1) * Tnoise_figure_reference (2)

where nf, or the noise figure is:

nf = 10 (A_receiver1*T_rcv + A_receiver0) (3)

The second bias is the waveguide radiometric noise temperature, which accounts for
instrument losses between the antenna and the receiver input. Losses that contribute to the
waveguide radiometer bias include those of the feed, the rotary joint and the waveguide; the
beam select switch; the transmitter switch; and the receiver protect switch. The means of
calculating the waveguide radiometric bias temperature for either polarization is:

Twaveguide_ipol = Lrcv_prot_sw * [(1-Lwg_rj_ipol) * Trj * Lbeam_sel_sw* L tran_rcv_sw +
(1-Lbeam_sel_sw) * Trcv_prot_sw * L tran_rcv_sw +
(1- Ltran_rcv_sw) * Trcv_prot_sw] +
(1-Lrcv_prot_sw) * Trcv_prot_sw (4)

The subscript ipol references the polarization that is being processed. Thus, ipol can
represent either horizontal or vertical polarization.

Jones[1] accounts for several loss factors in his formulation of the algorithm to calculate
apparent brightness temperature based on the excess detected noise in the scatterometer measure.
 To simpli fy the form of the ultimate algorithm, he combines the mathematical terms that express
these losses. The outcome contains four bias temperatures and loss factors, all of which are
attributable to multiple sources. Two of these are calculated once per telemetry frame. Jones
names these the Y_bias and the Z_Factor.

The algorithm for the Y_bias factor, that relates to the leakage of the opposite antenna
loss bias temperature, is:

Y ipol = Trcv_prot_sw * A y_factor_ipol (5)

where

Ay_factor_ipol = (1- Lwg_rj_opol) * Ibeam_sel_sw (6)

The subscript ipol references the polarization that is being processed. Thus, ipol can
represent either horizontal or vertical polarization. The subscript opol in the independent

Version 3.0 10/5/01 125

variable Lwg_rj_opol infers the opposite of the polarization that is referenced in the dependent
variable Ay_factor_ipol. Thus, to calculate A y_factor_v, one would apply the loss factor Lwg_rj_h.
Likewise, to calculate A y_factor_h, one would apply the loss factor Lwg_rj_v.

The algorithm for the Z factor is:

Z = Ltran_rcv_sw * Lrcv_prot_sw (7)

The apparent brightness temperature algorithm requires a representative measure of the
noise channel calibration energy En_cal. The load calibration pulse measurement provides the
source of the noise channel calibration energy. The algorithm smoothes the load calibration pulse
measurement over time. A rolling average over a range of calibrations that are nearest to the
time of the current telemetry frame performs this smoothing function. The tabular variable
qscat_rad_noise_dim stores the number of calibration measurements that contribute to each
rolling average calculation. In the current implementation, qscat_rad_noise_dim is 120.

INPUTS

The algorithm reads all four of these input parameters from the Calibration Pulse Product that is
generated by the Level 1A Processor:

Trcv temperature of the instrument receiver
Trcv_prot_sw temperature of the instrument receiver protect switch
Trj temperature of the instrument rotary joint
Calload ambient temperature load scatterometer noise calibration

OUTPUTS

Twaveguide_ipol waveguide radiometric bias temperature. One element applies for vertical
polarization, the other applies for horizontal polarization.

Yipol y-factor. This relates to cross-polarization leakage bias. One element applies for vertical
polarization, the other element applies for horizontal polarization.

Z z-factor
En-cal noise channel calibration energy
Trcv_rad the radiometric noise temperature attributed to the instrument receiver

CONSTANTS

All of the following constants are stored in the Level 1B Constants Table:

Arcv_prot_sw2 second order coefficient to calculate receiver protect switch loss 1.4413e-6
Arcv_prot_sw1 first order coefficient to calculate receiver protect switch loss -1.8054e-3
Arcv_prot_sw0 zero order coefficient to calculate receiver protect switch loss 1.1213
Tnoise_figure_reference noise figure reference temperature 290.0
Areceiver1 first order coefficient used to calculate noise figure ratio 5.333e-4

Version 3.0 10/5/01 126

Areceiver0 zero order coefficient used to calculate noise figure ratio 0.21226
Lwg_rj_v rotary joint and platform wave guide loss ratio for v-pol 0.7842
Lwg_rj_h rotary joint and platform wave guide loss ratio for h-pol 0.7730
Lbeam_sel_sw beam select switch loss factor 0.9772
Ltran_rcv_sw transmit/receive switch loss factor 0.9772
Ay_factor_v y-factor coefficient for vertical polarization 1.790712e-3
Ay_factor_h y-factor coefficient for horizontal polarization 1.70236e-3
Ibeam_sel_sw beam select switch isolation ratio 7.88863e-3
qscat_rad_temp_dim number of temperature measurements applied to each rolling

average calculation 78
qscat_rad_noise_dim number of noise measurements applied to each rolling

average calculation 120

PROCESSING

Step 1: Calculate a rolling average of the receiver temperature, the receiver protect switch
temperature, and the rotary joint temperature over the qscat_rad_temp_dim telemetry
frames which are nearest in time to the current telemetry frame.

Step 2: Use equation (1) to calculate the receiver protect switch loss.

Step 3: Use equations (2) and (3) to calculate the instrument receiver radiometric temperature.

Step 4: Use equation (7) to apply the rolling averaged receiver protect temperature to calculate
the Z factor.

Step 5: Use equations (5) and (6) to calculate the Y factor for each polarization.

Step 6: Use equation (4) to calculate the waveguide radiometric bias temperature for each
polarization.

Step 7: Calculate En_cal, a rolling average of the noise channel load calibration Calloadover the
qscat_rad_noise_dim calibration measures that are nearest in time to the current telemetry
frame.

REFERENCE

[1] Jones, Linwood, Second Generation QuikSCAT Radiometer Apparent Brightness
Temperature Algorithm Rev-B, University of Central Florida Remote Sensing Laboratory,
Orlando, Florida, March 16, 2000.

Version 3.0 10/5/01 127

SeaWinds Algorithm Specification

TITLE: Calculate Scatterometer Based Brightness Temperatures
SUBMODULE:
MODULE: Calculate Scatterometer Brightness Temperature
CODE: L1B.4.1.2
VERSION: 1.0
DATE: 04/23/01
AUTHOR: Barry Weiss
SUBROUTINE: Calculate_Brightness_Temperature
LANGUAGE: Fortran 90
HERITAGE: None

L1B.4.1.2 Calculate_Brightness_Temperature

PURPOSE

This algorithm calculates an apparent brightness temperature value for each measurement
acquired by the SeaWinds scatterometer. These brightness temperatures are subsequently
averaged with nearby measurements of the same polarization and then used in the Level 2B
Processor to detect the likelihood of precipitation. Relative to a radiometer, the brightness
temperatures that are extracted from the scatterometer measures are not very accurate. However,
the presence of rain over open water surfaces tends to dramatically increase the apparent
brightness temperature. Thus, these measurements remain effective detectors of precipitation
that are known to have adverse effects on scatterometer measurements.

BACKGROUND

The Level 1B Processor calls Calculate_Brightness_Temperature from the driver
subroutine Calculate_Sigma0_and_Kp. Calculate_Sigma0_and_Kp executes a loop over all of
the scatterometer pulses in the current telemetry frame. The same code removes any calibration
pulses from the processing sequence. Thus, each call to this algorithm processes one
measurement scatterometer pulse.

Most of the input parameters to this subroutine are calculated in
Calculate_Tb_Parameters. The Level 1B Processor determines the value of two other
prerequisite parameters before the call to Calculate_Brightness_Temperature. One of these
prerequisites is the bandwidth ratio a, which is calculated in Process_Calibration_Data. The
second is the sum of the echo energy for all twelve slices in the current scatterometer pulse, or
Eecho. Eecho is calculated in Est_Noise_Energy.

The algorithm in Calculate_Brightness_Temperature determines the apparent brightness
temperature in three steps. First, the algorithm calculates a weighted difference between the

Version 3.0 10/5/01 128

noise channel output energy and echo channel output energy. Jones [1] refers to this value as the
excess noise.

Nexcess = (Enoise- βrad * Eecho) * (α - 1) / (α - (1 + ε))

where

α is the noise channel to echo channel bandwidth ratio
βrad is the ratio of the mean noise channel gain to the mean echo channel gain
ε is the noise energy ratio between modulation on and modulation off operational modes

The algorithm uses the excess noise to calculate an effective total radiometric temperature
that accounts for all sources of the excess noise.

Teff_ipol = [Nexcess * (Trcv_prot_sw + Trcv_rad)/Ceff_load_cal] / [En-cal * (1 - 1/ α)]

where

Ceff_load_cal is the effective load calibration factor
Teff_ipol is the effective total radiometric temperature for the polarization of the

corresponding measurement pulse.

The algorithm now calculates the apparent brightness temperature. This method removes
three precalculated contributors from the effective total radiometric temperature, and then adjusts
the outcome with a series of instrument noise biases and loss factors. Note that the algorithm
also includes first order and zeroth order coefficients that can be used to adjust these results. In
the QuikSCAT implementation, the first order coefficient for both the vertical and the horizontal
polarization is one. The zeroth order coefficient for both the vertical and the horizontal
polarization is zero.

Tapp_ipol = Cslope_ipol * { [(Teff_ipol-Twaveguide_ipol-Tx-Trcv_rad)/Z - Dipol - Yipol] / Xipol } + Coffset_ipol

where

Tx is the transmitter leakage bias. This value is provided in the L1B Constants Table.
Dipol is the D loss factor. The Level 1B Constants Table contains two D factor values.

One applies for vertical polarization, the other for horizontal polarization.
Xipol is the X loss factor. The Level 1B Constants Table contains two X factor values.

One applies for vertical polarization, the other for horizontal polarization.
Cslope_ipol, Coffset_ipol - calibrates the outcome of the brightness temperature calculation to

correlate with measurements acquired using the Tropical Rainfall Measuring
Mission (TRMM) Microwave Imager (TMI).

Version 3.0 10/5/01 129

INPUTS

The algorithm reads the following input parameter directly from the Level 1A Product:

ipol index that identifies the polarization of the beam being processed
Enoise the noise channel energy for one observation, contains echo plus noise

Subroutine Calculate_Tb_Parameters calculates each of the following input parameters:

Twaveguide_ipol waveguide radiometric bias temperature. The input is specific to the
polarization of the active scatterometer beam. Thus, ipol can represent
either vertical or horizontal polarization.

Yipol y-factor noise bias. One element applies for vertical polarization, the other
element applies for horizontal polarization.

Z z-factor
En-cal noise channel calibration energy
Trcv_rad the radiometric noise temperature attributed to the instrument receiver

Subroutine Process_Calibration_Data determines the following value:

α the bandwidth ratio (noise channel to echo channel)

Subroutine Est_Noise_Energy determines the following value:

Eecho the sum of the twelve slice echo energies for a scatterometer observation

OUTPUTS

Tapp_ipolThe apparent brightness temperature. The output is specific to the polarization of the
active scatterometer beam. Thus, ipol can represent either vertical or
horizontal polarization.

CONSTANTS

All of the following constants are stored in the Level 1B Constants Table:
βrad ratio of the mean noise channel gain to the mean echo

channel gain 2.917427
Ceff_load_cal effective load calibration factor 0.952
Tx the transmitter leakage bias 2.0
Xv x-factor for vertical polarization 0.772418
Xh x-factor for horizontal polarization 0.761562
Dv d-factor for vertical polarization -0.426852
Dh d-factor for horizontal polarization 0.433037
Cslope_v correlation slope for vertical polarization 1.0

Version 3.0 10/5/01 130

Cslope_h correlation slope for horizontal polarization 1.0
Coffset_v correlation offset for vertical polarization 0.0
Coffset_h correlation offset for horizontal polarization 0.0

PROCESSING

Step 1: Calculates the excess noise for the scatterometer measurement pulse.

Step 2: Calculates the effective total radiometric temperature for the polarization of the current
scatterometer pulse.

Step 3: Calculates the apparent brightness temperature for the polarization of the current
scatterometer pulse.

REFERENCE

 [1] Jones, Linwood, Second Generation QuikSCAT Radiometer Apparent Brightness
Temperature Algorithm Rev-B, University of Central Florida Remote Sensing Laboratory,
Orlando, Florida, March 16, 2000.

Version 3.0 10/5/01 131

Track Echo Signal

Module L1B.5.0

ALGORITHM SPECIFICATIONS

AUTHORS: R. Scott Dunbar
S. Vincent Hsiao
Philip S. Callahan
Kyung S. Pak

VERSION: 1.0
DATE: April 25, 2001

Version 3.0 10/5/01 132

Track Echo Signal
MODULE L1B.5.0

I. Module Overview

The SeaWinds high-resolution mode provides return signal power data for 12 "slices" of
each received pulse. These slices are resolved in range by transmitting a chirped pulse to the
target and Fourier transforming the time history of the return into frequency space. Given the
spacecraft orbit and assuming no attitude errors, we can compute the expected frequency at
which the return from the antenna peak gain should be seen. Attitude errors introduce small
shifts in both range and doppler frequency which are manifested in shifts of the frequency of the
peak return.

Wu [1] introduced the idea of tracking the echo return frequency to estimate the
spacecraft attitude errors (roll, pitch, yaw). The formulation of the technique was soon after
refined by Dunbar [2], showing that the attitude errors could be uniquely determined in all three
components, although the yaw dependence was the weakest. Further work by Hsiao has
demonstrated that the attitude error can be tracked by this method with relatively few SeaWinds
scans. The estimates for pitch and roll obtained by constraining the yaw value were found to be
consistently better than the estimates for all three components obtained from an unconstrained
analysis.

The echo-tracking technique has been incorporated into the SeaWinds Level 1B
algorithm set. It is expected that it will be used for validation of the ADEOS-II horizon-sensor
attitude data, and possibly for generating the attitude data actually used in the SeaWinds cell
location processing.

This algorithm module consists of three main submodules. Track Echo Signal
(L1B.5.1.0) is the main driver that manages the echo-tracking algorithm processing. Manage
Echo Track Frames (L1B.5.2.0) deals with the accumulation and buffering of data required for
subsequent calculations, including gap handling. Acquire Echo Track Matrix (L1B.5.3.0)
computes the components of the attitude determination matrix from spacecraft and cell geometry
data. Finally, Calculate Echo Track Attitude (L1B.5.4.0) performs the actual inversion of the
echo track matrix and generates the estimated spacecraft roll, pitch, and yaw. Other required
calculations related to spacecraft and cell location geometry use algorithms from modules L1B.1
(Spacecraft Location) and L1B.2 (Geometry).

II. Functional Flow Description

The functional flow of this algorithm module is depicted in Figure 1. There are nine
subroutines that are specific to the echo-tracking calculations for which the specifications are
given in this module. These subroutines are highlighted in the figure. Other geometry
algorithms used elsewhere in the Level 1B processing are also used in this algorithm to generate
some of the data required by the echo-tracking calculations.

Version 3.0 10/5/01 133

Track_Echo_Signal (L1B.5.1.0)

This is the top-level driver for the echo-tracking algorithm calculations, called by the
Execute_L1B_Algorithms routine in the Level 1B processor.

Manage_Echo_Track_Frames (L1B.5.2.0)

This routine sets up and controls the buffering of data for the echo-tracking algorithm.
For each incoming L1A frame number and time tag, it determines whether the buffer contains
sufficient contiguous data to produce an attitude record, whether and where there are gaps in the
buffered data, and when the buffer needs to be re-initialized. Buffer initialization is performed
by the Initialize_Echo_Track (L1B.5.2.1) subroutine. The Track_Frame_Times (L1B.5.2.2)
subroutine is called later in the echo tracking to keep a running count of the number of frames in
the buffer, and the cumulative frame times in the buffer (to generate a mean attitude
measurement time tag).

Acquire_Echo_Track_Matrix (L1B.5.3.0)

This routine computes the contributions of the current frame to the matrix elements
involved in the later attitude estimation, and maintains the cumulative values of those matrix
elements. Prior to this, at convenient points in the general cell geometry computations that are
required for echo tracking, the subroutines Ascertain_Beam_Para-meters (L1B.5.3.1) and
Determine_Echo_Track_Parameters (L1B.5.3.2) are called. Ascertain_Beam_Parameters
(L1B.5.3.1) determines the beam (inner/outer) and other key instrument parameters needed for
the geometric calculations for each pulse. Deter-mine_Echo_Track_Parameters (L1B.5.3.2)
computes the orbit radius and the Earth radius at the nadir, which can be computed once per
frame.

Calculate_Echo_Track_Attitude (L1B.5.4.0)

This submodule performs the final attitude estimation from the accumulated data in the
echo-track buffer, producing a finished attitude record. The computation involves the inversion
of the least-squares normal matrix for which the elements have been computed in the
Acquire_Echo_Track_Matrix (L1B.5.3.0) submodule. An invertibility check is performed by the
subroutine Determine Singularity (L1B.5.4.1) to compute the determinant of the normal matrix
before the inversion is attempted.

Version 3.0 10/5/01 134

III. Implementation Assumptions

The Echo Tracking algorithm is the first of the L1B algorithms to be executed from
within the L1B processor. It manages a buffer of data required for the eventual attitude
determination step, generating an attitude state (roll, pitch, yaw) for each 20 seconds of data. All
of the geometric computations are performed relative to the pulse centers, using whatever input
attitude data, if any, is available to generate the echo tracking inputs. The output attitude state is
then returned to the main L1B algorithm processor for use in the actual cell location and
backscatter calculations.

V
er

si
on

 3
.0

 1
0/

5/
01

1
3
5

F
ig

ur
e

1.
 S

ea
W

in
ds

 E
ch

o
T

ra
ck

in
g

A
lg

or
it

hm
 F

un
ct

io
na

l F
lo

w

=

E
ch

o
T

ra
ck

in
g

al
go

ri
th

m
 m

od
ul

e

=

L
1B

 g
eo

m
et

ry
 m

od
ul

es
 (

al
so

 u
se

d
in

 e
ch

o
tr

ac
ki

ng
)

T
ra

ck
 E

ch
o

Si
gn

al
L

1B
.5

.1
.0

M
an

ag
e

E
ch

o
T

ra
ck

 F
ra

m
es

L
1B

.5
.2

.0

A
cq

ui
re

 E
ch

o
T

ra
ck

 M
at

ri
x

L
1B

.5
.3

.0

C
al

cu
la

te
 E

ch
o

T
ra

ck
 A

tti
tu

de
L

1B
.5

.4
.0

In
it

ia
li

ze
 E

ch
o

T
ra

ck
L

1B
.5

.2
.1

Id
en

ti
fy

 F
ra

m
es

 in
 G

ap
s

In
te

rp
ol

at
e

E
ph

em
er

is
C

al
cu

la
te

 S
/C

 N
ad

ir
Se

le
ct

 N
ea

re
st

 A
tt

it
ud

e

D
et

er
m

in
e

E
ch

o
T

ra
ck

Pa
ra

m
et

er
s

L
1B

.5
.3

.2

A
sc

er
ta

in
 B

ea
m

 P
ar

am
et

er
s

L
1B

.5
.3

.1

C
al

cu
la

te
 L

oc
al

 C
oo

rd
in

at
es

C
al

cu
la

te
 A

tt
it

ud
e

R
ot

at
io

n
C
a
l
c
u
l
a
t
e

R
e
l
a
t
i
v
e

V
e
l
o
c
i
t
y

C
al

cu
la

te
 A

nt
en

na
 A

zi
m

ut
h

C
al

cu
la

te
 R

an
ge

 D
op

pl
er

C
al

cu
la

te
 B

or
es

ig
ht

C
on

ve
rt

 S
C

 to
 L

oc
al

C
on

ve
rt

 L
oc

al
 to

 G
eo

ce
nt

ri
c

L
oc

at
e

C
el

l o
n

E
ar

th
C

on
ve

rt
 R

ec
ta

ng
ul

ar
 to

G
e
o
c
e
n
t
r
i
c

T
ra

ck
 F

ra
m

e
T

im
es

L
1B

.5
.2

.2

D
et

er
m

in
e

Si
ng

ul
ar

ity
L

1B
.5

.4
.1 G

en
er

at
e

In
ve

rs
e

M
at

ri
x

L
ev

el
 1

B
 A

lg
or

it
hm

 P
ro

ce
ss

or

ro
ll

, p
it

cH
,y
a
w

Version 3.0 10/5/01 136

SeaWinds Algorithm Specification

TITLE: Track Echo Signal
SUBMODULE:
MODULE: Track Echo Signal
CODE: L1B.5.1.1
VERSION: 1.0
AUTHOR: R. Scott Dunbar, S. Vincent Hsiao, Philip S. Callahan
SUBROUTINE: Track_Echo_Signal
LANGUAGE: FORTRAN 90
HERITAGE: None

L1B.5.1.1 Track_Echo_Signal

PURPOSE

This module is the main driver for the Level 1B Processor echo tracking algorithm. The
echo tracking algorithm provides an alternative means to determine the attitude of the spacecraft.
 The algorithm detects the peak of the echo signal returned to the scatterometer and compares the
observed frequency shift of that peak against the expected nominal shift assuming no attitude
errors. By accumulating these frequency shift data from several scans, the actual attitude of the
spacecraft, relative to a nadir-referenced body coordinate system, can be estimated.

BACKGROUND

The SeaWinds high-resolution mode provides return signal power data for 12 "slices" of a
received echo pulse. These slices are resolved in range by transmitting a chirped pulse to the
target and Fourier transforming the time history of the return into frequency space. Given the
spacecraft orbit and assuming no attitude (roll, pitch, yaw) errors, we can compute the expected
frequency at which the return from the antenna peak gain should be seen. Attitude errors
introduce small shifts in both range and doppler frequency which are manifested in shifts of the
frequency of the peak return. If δR is the change of the slant-range vector to the target due to
attitude errors, then the combined doppler- and range-related frequency shift is given in general
by:

∆F = ∆FR + ∆FD = (2µ/c) δR⋅⋅Ru + (2F/c)dRu⋅⋅Vr

where F is the transmit frequency in Hz, µ is the chirp rate in Hz/sec, c is the speed of light, R
and δR are the slant range vector and its attitude-induced shift, Ru and δRu are their respective
unit vectors, and Vr is the relative velocity of the spacecraft and the target location. The total ∆F
is thus a function of the spacecraft location and velocity, the target location, and the attitude of

Version 3.0 10/5/01 137

the spacecraft. Given the spacecraft orbit, the frequency shift can be expressed as a function of
the scan azimuth θ in the form:

∆F = A cos θ + B sin θ + C

where the coeff icients A, B, and C are in turn functions of the orbit (spacecraft location and
relative velocity), instrument look angle, and attitude.

The orbit and look angle dependencies can be computed separately from the usual cell
location calculations as coeff icients of the attitude components, giving three linear equations for
A, B, and C with three unknowns, the roll , pitch, and yaw. Therefore, if the A, B, and C values
can be estimated separately from the observed frequency shifts (by Fourier analysis of the ∆F
over one or more instrument scans), it is possible to obtain a unique solution for the attitude. In
practice, since the yaw dependence is very weak, it is useful to constrain the yaw value and solve
explicitl y only for the roll and pitch. The option to compute either the yaw-constrained 2-
component attitude solution or the full " free" solution for all three attitude components is
maintained in the SeaWinds echo tracking algorithm implementation.

INPUTS

s_factor An array of coefficients, each of which, when applied to the earth's surface
elevation at a target location, determine the net fluctuation in the
frequency shift of the scatterometer signal.

bb_freq_off_corr A correction to the calculated change in baseband frequency which is used
to determine the X Factor value for each echo measurement.

pulse_dim The number of scatterometer pulses recorded in a telemetry frame.
echo_track_start The sequential number of the telemetry frame record in each data partition

where the Level 1B Processor begins to run the echo track algorithm to
generate attitude data

echo_track_stop The sequential number of the telemetry frame record in each data partition
where the Level 1B Processor completes running the echo track algorithm
to generate attitude data.

track_echo Flag that indicates whether the echo tracking option is active.
rev_orbit_period The approximate time between two consecutive ascending node crossings

in the spacecraft orbital path.
true_cal_pulse_pos The index of the loopback calibration in the calibration pulse sequence.
frame_qual_flag Bit flags which indicate the character and the quality of the data acquired

within a particular telemetry frame.
pulse_qual_flag Bit flags which specify whether the quality of data for a particular pulse

within a telemetry frame is reliable.
frame_inst_status Bit flags which indicate the status of the SeaWinds instrument over the

time span of a single telemetry frame.
frame_time_secs The time which the SeaWinds Command and Data Subsystem (CDS)

assigns to the telemetry data packet.

Version 3.0 10/5/01 138

orbit_time The time of each telemetry data packet relative to the time of the most
recent ascending node crossing.

power_dn The combined signal and noise power measured by the SeaWinds
instrument.

doppler_orbit_step The Doppler orbit step that is active at the time of the 100th pulse in the
telemetry frame.

prf_orbit_step_change Indicator of a change of the Doppler orbit step within a telemetry frame.
The value designates the first pulse within the telemetry frame which is in
the specified doppler_orbit_step for the associated telemetry frame.

range_gate_a_widthThe period of time when the SeaWinds Scatterometer Electronic
Subsystem (SES) receiver range gate is open to measure the echo power of
pulses transmitted via the inner antenna beam.

range_gate_b_widthThe period of time when the SeaWinds Scatterometer Electronic
Subsystem (SES) receiver range gate is open to measure the echo power of
pulses transmitted via the outer antenna beam.

pulse_width The commanded duration of the pulse transmission for both channels A
and B.

prf_cycle_time The commanded time period between sequential pulse transmissions as a
data number.

antenna_position The antenna position as indicated by the SeaWinds Antenna Subsystem
(SAS) at the falling edge of the first measurement pulse in the telemetry
frame in data number units.

orb_smaj_axis The length of the semimajor axis of the ADEOS II or QuikSCAT
spacecraft orbit.

gap_structure A structure that contains the data which are relevant to processing gaps in
the Level Processors.

OUTPUTS

echo_track_attitude_struct
This data structure contains two major elements, num_attitude_recs and
the Attitude structure. Num_attitude_recs specifies the number of
available attitude records. Attitude is the data structure which contains
one full set of attitude data.

CONSTANTS

global_constants A table of established physical or mathematical constants.
l1b_constants A table that contains constants specific to the L1B Processor.
telemetry_constants This table contains the run time constants required by the

SeaWinds/QuikSCAT Processors and Preprocessors that manipulate
telemetry and housekeeping data.

cell_geom_constantsThis data structure contains a set of constants that are required to calculate
the location of sigma0 cells and slices on the earth's surface.

Version 3.0 10/5/01 139

PROCESSING

For each input frame:

Step 1.Call Manage_Echo_Track_Frames (L1B.5.2.0) to initialize and manage the echo track
frame buffering.

Step 2.Interpolate the ephemeris at the frame time to get the spacecraft state vector.
Step 3.Compute the spacecraft nadir location.
Step 4.Get the nearest attitude from the input attitude file. The input attitude is only used

to obtain a better approximation of the footprint locations for the pulses; in the case
where the input attitude data is absent or untrustworthy, use [roll,pitch,yaw] = [0,0,0] for
the input attitude.
Step 5.Compute other once-per-frame parameters used in the cell geometry.
Step 6.Call Determine_Echo_Track_Parameters (L1B.5.3.1) to compute the spacecraft orbit

radius and the radius of the earth ellipsoid at the nadir.
Step 7. Compute the components of the local (S,T,U) coordinate system.
Step 8. Compute the attitude rotation matrix (includes both instrument mount errors and input
attitude errors).
Step 9. Compute the relative velocity of the spacecraft with respect to the nadir location.

For each pulse in a frame:
Step 10. Call Ascertain_Beam_Parameters (L1B.5.3.1) to determine various beam-related
parameters (beam index, antenna elevation angle, range gate width, slant range) for the pulse.
Step 11. Compute the antenna azimuth.
Step 12. Compute the doppler parameters for the pulse.
Step 13. Compute the components of the boresight vector to the pulse.
Step 14. Transform the spacecraft state vector into the local coordinate system.
Step 15. Compute the boresight vector components in the geocentric coordinate system.
Step 16. Locate the pulse footprint on the Earth's surface in the geocentric system.
Step 17. Compute the vector dot product of the local velocity vector and the local boresight

vector.
Step 18.Call Acquire_Echo_Track_Matrix (L1B.5.3.0) to compute the coefficients of the

∆F [A,B,C] vs. [roll,pitch,yaw] system of equations and the frequency shift ∆F for each
pulse.

For each input frame:
Step 19. Call Track_Frame_Times (L1B.5.2.3) to determine if there is enough buffered data to

compute a new attitude set.

When sufficient data have been buffered:
Step 20. Call Calculate_Echo_Track_Attitude (L1B.5.4.0) to solve the ∆F [A,B,C] vs.

[roll,pitch,yaw] system of equations for the estimated attitude.

Version 3.0 10/5/01 140

AUXILIARY DATA

doppler_range_delayThe Doppler Range Delay table contains two pairs of identical data
structures. One pair contains the tabular data used to calculate
commanded Doppler frequencies, the second pair contains the tabular data
used to calculate range delays.

elevation The representative elevation of the earth's surface for a roughly
quadrilateral area that extends for 1/4 of a degree on each side.

rev_attitude_struct This data structure contains two major elements, num_attitude_recs and
the Attitude structure. Num_attitude_recs specifies the number of
available attitude records. Attitude is the data structure which contains
one full set of attitude data.

rev_ephemeris_struct This data structure contains four major elements, num_ephemeris_recs,
the Ephemeris structure, gap_count, and the Ancillary_Gap structure.
Num_ephemeris_recs specifies the number of available ephemeris records.
 Ephemeris is the data structure which contains one full set of ephemeris
data.

REFERENCES

[1] C. Wu, "SeaWinds Attitude Compensation and Determination", JPL IOM 3340-
97-04CW, March 6, 1997.

[2] R. S. Dunbar, "SeaWinds Attitude Determination from Echo Frequency Shifts", JPL
IOM 3340-97-01RSD, June 10, 1997.

Version 3.0 10/5/01 141

SeaWinds Algorithm Specification

TITLE: Manage Echo Track Frames
SUBMODULE: Manage Echo Track Frames
MODULE: Track Echo Signal
CODE: L1B.5.2.0
VERSION: 1.0
AUTHOR: R. Scott Dunbar, S. Vincent Hsiao, Philip S. Callahan
SUBROUTINE: Manage_Echo_Track_Frames
LANGUAGE: FORTRAN 90
HERITAGE: None

L1B.5.2.0 Manage_Echo_Track_Frames

PURPOSE

This subroutine tests input telemetry frames as they are used in echo tracking. Each echo
track attitude is based on a series of more or less continguous telemetry frames, for which the
data required for echo tracking is stored in a buffer. The nominal number of frames in an echo
track buffer is a runtime constant. The number of telemetry frames actually used (and usable) in
an echo track block may change, however, if data gaps are located in the input data set, or if the
operator specifies data skips.

INPUTS

 echo_track_stop The sequential number of the telemetry frame record in each data partition
where the Level 1B Processor completes running the echo track algorithm
to generate attitude data.

 frame_time_secs The time which the SeaWinds Command and Data Subsystem (CDS)
assigns to the telemetry data packet.

INPUTS/OUTPUTS

 first_frame_in_partition_frames
A logical variable used to determine whether the current frame is the first
one in the data set.

 first_frame_in_partition_gaps
A logical variable used to determine whether the current frame is the first
one in the data set.

 track_echo_gap_structure
A structure that contains the data which are relevant to processing gaps in

Version 3.0 10/5/01 142

the echo tracking module of the Level Processors.

 total_echo_track_frames
The actual number of telemetry frames that the Level 1B
Processor uses to calculate an echo tracked attitude.

 echo_track_block_abbreviated
A logical variable that indicates a data gap has significant effects on the
echo track calculation.

 last_echo_track_frame
A logical variable that indicates whether the current telemetry
frame is the final frame in the set used to calculate an attitude
measure based on the echo tracking algorithm.

 skip_frame A logical variable which indicates whether or not the current
telemetry frame should be processed.

 frame_number This index specifies the active rev telemetry frame in Level 1A
processing.

 max_num_contiguous_frames
The maximum number of frames found within a predefined block
of frames for deriving an echo track attitude record.

 num_contiguous_frames
The number of frames found within a predefined block of frames
that are next to one another.

 used_frame Flag indicating that a processed frame was used for deriving echo
track attitude data.

The following are passed to Initialize_Echo_Tracking (L1B.5.2.1) when needed:

 uf, vf, wf The three elements of the "measurement" column vector for the
least-squares estimator for attitude.

 uu,uv,uw, The six unique matrix elements of the least-squares estimator for
 vv,vw,ww attitude.

 total_frame_time_secs The sum of the frame_time_secs measurements for all of the
telemetry frames that contribute to a single echo tracking
measurement.

Version 3.0 10/5/01 143

CONSTANTS

 l1b_constants A table that contains constants specific to the L1B Processor. The
key constant here is the nominal size of the echo track buffer
(number of frames used in the buffer).

PROCESSING

Step 1. Under nominal conditions, increment the frame_number. However, if the previous call
to Manage_Echo_Track_Frames indicated a sufficiently large gap to generate an
abbreviated echo track attitude, the current call will not increment the frame_number nor
check any of the other conditions related to that frame. Furthermore, if partitioning of
the science data is employed (the nominal case), the frame number is not incremented at
the beginning of a data partition.

Step 2. If the current frame is the first in an echo track buffer, or if the previous telemetry frame
is used to calculate an echo track attitude measurement, declare the current telemetry
frame as the first frame in a new echo track block. The current frame time becomes the
time against which to test subsequent frame times.

Step 3. The summation variables that are used to calculate echo tracked attitudes are initialized
by Initialize_Echo_Tracking (L1B.5.2.1). The contiguous frames counters are reset.

Step 4. Determine whether the current frame is within a user specified gap. If it is, set the logical
variable skip_frame to .TRUE. and return to Track_Echo_Signal (L1B.5.1.0).

Step 5. Check the current frame time against the time of the first frame in the buffer. If the time
difference is too large, set skip_frame to TRUE, echo_track_block_abbreviated to TRUE,
and last_echo_track_frame to TRUE. Since skip_frame is TRUE, the subsequent echo
track code will not include the current telemetry frame in the echo track calculation. Since
echo_track_block_abbreviated is TRUE, the next call to Manage_Echo_Track_Frames
will not increment the frame_number. Thus, the current telemetry frame will be included
in the next echo track buffer.

Step 6. If the current frame is the last one in the collection of frames being used to derive an
attitude record, or if the current frame is the last one in the current partition, set the
logical variable last_echo_track_frame to TRUE. This flag indicates to subsequent code
that there is sufficient data in the buffer to calculate a new attitude record.

Version 3.0 10/5/01 144

SeaWinds Algorithm Specification

TITLE: Initialize Echo Tracking
SUBMODULE: Manage Echo Track Frames
MODULE: Track Echo Signal
CODE: L1B.5.2.1
VERSION: 1.0
AUTHOR: R. Scott Dunbar, S. Vincent Hsiao, Philip S. Callahan
SUBROUTINE: Initialize_Echo_Track
LANGUAGE: FORTRAN 90
HERITAGE: None

L1B.5.2.1 Initialize_Echo_Track

PURPOSE

This subroutine initializes the summation variables that are used for each block of
telemetry frames that generate an echo track attitude measurement.

INPUTS/OUTPUTS

 total_echo_track_frames The actual number of telemetry frames that the Level 1B Processor
uses to calculate an echo tracked attitude.

 total_frame_time_secs The sum of the frame_time_secs measurements for all of the
telemetry frames that contribute to a single echo tracking
measurement.

 uf, vf, wf The three elements of the "measurement" column vector for the
least-squares estimator for attitude.

 uu,uv,uw, The six unique matrix elements of the least-squares estimator for
 vv,vw,ww attitude.

PROCESSING

Step 1. Set the values of total_frame_time_secs and total_echo_track_frames to zero.

Step 2. Set the values of the measurement vector elements uf, vf, wf to zero.

Step 3. Set the values of the normal matrix elements uu,uv,uw,vv,vw,ww to zero.

Version 3.0 10/5/01 145

SeaWinds Algorithm Specification

TITLE: Track Frame Times
SUBMODULE: Manage Echo Track Frames
MODULE: Track Echo Signal
CODE: L1B.5.2.2
VERSION: 1.0
AUTHOR: R. Scott Dunbar, S. Vincent Hsiao, Philip S. Callahan
SUBROUTINE: Track_Frame_Times
LANGUAGE: FORTRAN 90
HERITAGE: None

L1B.5.2.2 Track_Frame_Times

PURPOSE

This routine sums the frame times of the telemetry frames in the current echo tracking
buffer and counts the number of frames in the buffer. These data are used to determine if there is
sufficient data to produce the next attitude set from the echo tracking algorithm.

INPUTS

frame_time_secs The time tag (in seconds from 1/1/1993) assigned to the input
Level 1A frame.

INPUT/OUTPUTS

total_echo_track_frames The cumulative total of frames in the echo tracking buffer.

total_frame_time_secs The sum of the frame times of the frames in the echo
tracking buffer.

PROCESSING

Step 1. Add the current frame_time_secs to the cumulative total_frame_time_secs.

Step 2. Increment the value of the frame counter (total_echo_track_frames).

Version 3.0 10/5/01 146

SeaWinds Algorithm Specification

TITLE: Acquire Echo Track Matrix
SUBMODULE: Acquire Echo Track Matrix
MODULE: Track Echo Signal
CODE: L1B.5.3.0
VERSION: 1.0
AUTHOR: R. Scott Dunbar, S. Vincent Hsiao, Philip S. Callahan
SUBROUTINE: Acquire_Echo_Track_Matrix
LANGUAGE: FORTRAN 90
HERITAGE: None

L1B.5.3.0 Acquire_Echo_Track_Matrix

PURPOSE

This routine accumulates the elements of the attitude determination matrix used in the
echo-tracking algorithm.

BACKGROUND

The application of the echo tracking algorithm for attitude determination depends on the
changes in the observed frequency of the peak return of the SeaWinds echo signal. This attitude-
induced frequency shift is composed of both a doppler component and a range component, the
latter due to the chirped transmit pulse of the instrument in its high-resolution mode. The
frequency shift can be formally expressed as:

∆F = ∆FR + ∆FD = (2µ/c) δR⋅⋅Ru + (2F/c)dRu⋅⋅Vr

where F is the transmit frequency in Hz, µ is the chirp rate in Hz/sec, R and δR are the slant
range vector and its attitude-induced shift, Ru and δRu are their respective unit vectors, and Vr is
the relative velocity of the spacecraft and the target location. The total ∆F is thus a function of
the spacecraft location and velocity, the target location, and the attitude of the spacecraft. Given
the spacecraft orbit, the frequency shift can be expressed as a function of the scan azimuth θ in
the form:

∆F = A cos θ + B sin θ + C

where the coefficients A, B, and C are in turn functions of the orbit (spacecraft location and
relative velocity), instrument look angle, and attitude.

The frequency shift ∆F as used here is the deviation of the actual frequency of the peak

Version 3.0 10/5/01 147

signal return from that expected in the absence of attitude errors. To measure these deviations
from the data, we use the power measurements for the slices (in data numbers, dn) in each pulse
to determine the power centroid and its frequency within the echo bandwidth and compare it to
the expected value. The centroid is a weighted average of the power dn values Pi over all slices
i:

Cpower = Σ Cfi Pi

4 / Σ Pi

4

where the Cfi are a set of constant weights (including a slice number factor of 1/10). The
measured frequency shift ∆F is then given by:

∆F = -Cpower Becho + ∆Fo + δfft/2

where Becho is the echo bandwidth of the receiver over the center 10 slices, ∆Fo is the "expected"
frequency shift assuming no attitude error, and δfft is the FFT bin width of the receiver.

The analysis by Dunbar [1] provided formulas for the A, B, and C coefficients in terms of
the attitude errors ρ, φ, and ψ (roll, pitch, and yaw, respectively), the antenna look angle α, and
the components of the relative velocity Vrel of the spacecraft with respect to the target (in the
local spacecraft coordinate system):

A = [(2F/c) Vrel,y sin α] ψ - (2/c)[µγ + F Vrel,z sin α] φ

B = [-(2F/c) Vrel,x sin α] ψ + (2/c)[µγ + F Vrel,z sin α] ρ

C = [(2F/c) Vrel,x cos α] φ - [(2F/c) Vrel,y cos α] ρ

where F is the transmit frequency, c is the speed of light in vacuum, µ is the chirp rate, and the
geometric factor γ is given by:

γ = r sin α { 1 - cos α [(Re
2/r2) - sin2α]-1/2 }

in which r is the spacecraft orbit radius at the observation time and Re is the radius of the Earth.
These formulas are based in part on the assumption that the attitude errors are small angles.

Rearrangement of the terms in the ∆F equation yields a linear equation in the attitude
errors for the ith pulse of the form:

∆Fi = Ui ρ + Vi φ + Wi ψ

The formal least-squares solution to the linear system obtained by accumulating measurements
over several scans is:

 [ρ φ ψ] = ([Ui Vi Wi]
T [Ui Vi Wi])

-1 [Ui Vi Wi]
T ∆Fi

The matrix elements that are required are thus:

Version 3.0 10/5/01 148

Elements of the vector [Ui Vi Wi]
T ∆Fi :

uf = Σ Ui ∆Fi vf = Σ Vi ∆Fi wf = Σ Wi ∆Fi

Elements of the symmetric [Ui Vi Wi]
T [Ui Vi Wi] matrix:

uu = Σ Ui Ui uv = Σ Ui V i uw = Σ Ui Wi

vv = Σ V iV i vw = Σ V i Wi ww = Σ Wi Wi

Once these coeff icients have been accumulated over suff icient data to produce an accurate
solution, the estimates of the attitude errors can be computed.

INPUTS

 spacecraft_orbit_radius The radius of the spacecraft orbit at the current spacecraft position.
 earth_radius The distance from the sea level to the center of the earth at the

current spacecraft position.
 slice_res_index The array index which corresponds to the current effective gate

width.
 beam_index A number which identifies one of the two SeaWinds antenna

beams.
 local_velocity The vector that describes the velocity of the spacecraft in the

spacecraft local coordinate system. The local coordinate system is
centered at the orbital position of the spacecraft.

 slant_range The distance from the spacecraft to the center of the sigma0 cell on
the earth's surface.

 rangedelay_center_factor A correction factor applied to the commanded range gate
delay that centers the echo pulse within the range gate time span.

 commanded_rangedelay The range gate delay for a particular scatterometer pulse
based on the contents of the Doppler Range Table.

 commanded_doppler_freqThe Doppler frequency of a particular scatterometer pulse
based on the contents of the Doppler Range Table.

 calculated_doppler_freq The Doppler frequency for a particular scatterometer pulse
based on Level 1B Processor calculations.

 power_dn The combined signal and noise power measured by the SeaWinds
instrument.

 pulse_orbit_time The time of the falling edge of a scatterometer pulse relative to a
single orbital cycle.

 rev_orbit_period The approximate time between two consecutive ascending node
crossings in the spacecraft orbital path.

 cell_lat The geodetic latitude of the center of a whole pulse sigma0 cell.
 cell_lon The longitude of the center of a whole pulse sigma0 cell.

Version 3.0 10/5/01 149

 elevation The representative elevation of the earth's surface for a roughly
quadrilateral area that extends for 1/4 of a degree on each side.

 s_factor An array of coefficients, each of which, when applied to the earth's
surface elevation at a target location, determine the net fluctuation
in the frequency shift of the scatterometer signal.

bb_freq_off_corr A correction to the calculated change in baseband frequency which
is used to determine the X Factor value for each echo
measurement.

antenna_azimuth The antenna azimuth as indicated by the SeaWinds Antenna
Subsystem (SAS) at the falling edge of each measurement pulse.

OUTPUTS

 uf, vf, wf The three elements of the "measurement" column vector for the
least-squares estimator for attitude.

 uu,uv,uw, The six unique matrix elements of the least-squares estimator for
 vv,vw,ww attitude.

CONSTANTS

 global_constants The entries in the Global Constants table are well established
physical, mathematical and astronomical constants.

 l1b_constants This table contains the run time constants required by the Level 1B
Processor.

 cell_geom_constants This data structure contains a set of constants that are required to
calculate the location of sigma0 cells and slices on the earth's
surface.

PROCESSING

Step 1.For the given parameters of the pulse computed previously in the geometric and orbital
computations, compute the values of the Ui , Vi , and Wi coefficients of the ∆F equation.

Step 2.Form the products Ui ∆Fi , Vi ∆Fi , and Wi ∆Fi and add them to their respective
measurement vector elements uf, vf, and wf.

Step 3.Compute the terms Ui Ui , Ui V i , Ui Wi , ViV i , Vi Wi , Wi Wi , and add them to their
respective matrix elements uu, uv, uw, vv, vw, and ww.

REFERENCES

[1] R. S. Dunbar, "SeaWinds Attitude Determination from Echo Frequency Shifts", JPL
IOM 3340-97-01RSD, June 10, 1997.

Version 3.0 10/5/01 150

SeaWinds Algorithm Specification

TITLE: Ascertain Beam Parameters
SUBMODULE: Acquire Echo Track Matrix
MODULE: Track Echo Signal
CODE: L1B.5.3.1
VERSION: 1.0
AUTHOR: R. Scott Dunbar, S. Vincent Hsiao, Philip S. Callahan
SUBROUTINE: Ascertain_Beam_Parameters
LANGUAGE: FORTRAN 90
HERITAGE: None

L1B.5.3.1 Ascertain_Beam_Parameters

PURPOSE

This subroutine determines beam based parameters that are required to use scatterometer
beams in the echo tracking algorithm. The subroutine operates on each pulse in a scatterometer
frame to identify which parameters are applicable to the pulse.

INPUTS

first_pulse_beam A number that identifies whether the first pulse in a telemetry frame was
generated by the inner or the outer scatterometer beam.

i_pulse A counter which specifies a particular pulse within a telemetry frame (1-
100).

range_gate_a_widthThe period of time when the SeaWinds Scatterometer Electronic
Subsystem (SES) receiver range gate is open to measure the echo power of
pulses transmitted via the inner antenna beam.

range_gate_b_widthThe period of time when the SeaWinds Scatterometer Electronic
Subsystem (SES) receiver range gate is open to measure the echo power of
pulses transmitted via the outer antenna beam.

slant_range_center_inner The distance from the spacecraft to the center of the sigma0 cell
generated by the SeaWinds instrument inner beam on the earth's surface.

slant_range_center_outer The distance from the spacecraft to the center of the sigma0
cell generated by the SeaWinds instrument outer beam on the
earth's surface.

OUTPUTS

beam_index A number which identifies one of the two SeaWinds antenna beams.
antenna_elevation The angle of the maximum gain of the SeaWinds antenna with

Version 3.0 10/5/01 151

respect to the spacecraft Z axis.
range_gate_width_dnThe period of time when the SeaWinds Scatterometer Electronic

Subsystem (SES) receiver range gate is open to measure the echo
power for the active scatterometer beam.

slant_range_center The distance from the spacecraft to the center of the sigma0 cell
generated by the SeaWinds instrument on the earth's surface.

CONSTANTS

l1b_constants A table that contains constants specific to the L1B Processor.

PROCESSING

Step 1.Determine the relative pulse position within the frame. Since the SeaWinds pulses
alternate between the inner and outer beams, we only need to determine if the pulse
position is odd [mod(i_pulse,2) = 1] or even [mod(i_pulse,2) = 0].

Step 2.If the pulse position is odd and the first pulse of the frame was generated by the inner
beam, or if the pulse position is even and the first pulse of the frame was generated by the
outer beam, then:

beam_index = inner_beam_index
antenna_elevation = inner beam antenna look angle (from L1B constants)
range_gate_width = range_gate_a_width (for inner beam)
slant_range_center = slant range to center for an inner beam cell

Else (the pulse is from the outer beam):

beam_index = outer_beam_index
antenna_elevation = outer beam antenna look angle (from L1B constants)
range_gate_width = range_gate_b_width (for outer beam)
slant_range_center = slant range to center for an outer beam cell

Version 3.0 10/5/01 152

SeaWinds Algorithm Specification

TITLE: Determine Echo Track Parameters
SUBMODULE: Acquire Echo Track Matrix
MODULE: Track Echo Signal
CODE: L1B.5.3.2
VERSION: 1.0
AUTHOR: R. Scott Dunbar, S. Vincent Hsiao, Philip S. Callahan
SUBROUTINE: Determine_Echo_Track_Params
LANGUAGE: FORTRAN 90
HERITAGE: None

L1B.5.3.2 Determine_Echo_Track_Params

PURPOSE

This routine calculates the spacecraft orbit radius and the earth radius at the spacecraft
nadir, which are needed for later echo tracking computations. These values are computed once
per frame.

INPUTS

spacecraft_lat The geodetic latitude of the spacecraft nadir.
spacecraft_pos_vel The spacecraft state vector (position and velocity components).

OUTPUTS

spacecraft_orbit_radius The geocentric radius of the spacecraft orbit at the current
spacecraft position.

earth_radius The geocentric radius of the earth ellipsoid at the spacecraft nadir
 location.

CONSTANTS

global_constants The entries in the Global Constants table are well established
physical, mathematical and astronomical constants. The key

constants used here are:

earth_equatorial_radius = 6378136.3 meters
earth_flattening = 0.0033528131778969144

Version 3.0 10/5/01 153

PROCESSING

Step 1. Compute the spacecraft orbit radius from the state vector position components (x,y,z):

spacecraft_orbit_radius = (x2 + y2 + z2)1/2

Step 2. Compute the radius of the earth ellipsoid at the spacecraft nadir location:

R(spacecraft_lat) = Rearth*(1 - flat*sin(spacecraft_lat))

Version 3.0 10/5/01 154

SeaWinds Algorithm Specification

TITLE: Calculate Echo Track Attitude
SUBMODULE: Calculate Echo Track Attitude
MODULE: Track Echo Signal
CODE: L1B.5.4.0
VERSION: 1.0
AUTHOR: R. Scott Dunbar, S. Vincent Hsiao, Philip S. Callahan
SUBROUTINE: Calculate_Echo_Track_Attitude
LANGUAGE: FORTRAN 90
HERITAGE: None

L1B.5.4.0 Calculate_Echo_Track_Attitude

PURPOSE

This routine computes the estimated attitude state from the accumulated echo-tracking
data.

BACKGROUND

The application of the echo tracking algorithm for attitude determination depends on the
changes in the observed frequency of the peak return of the SeaWinds echo signal. The total ∆F
is thus a function of the spacecraft location and velocity, the target location, and the attitude of
the spacecraft. Given the spacecraft orbit, the frequency shift can be expressed as a function of
the scan azimuth θ in the form:

∆F = A cos θ + B sin θ + C

where the coefficients A, B, and C are in turn functions of the orbit (spacecraft location and
relative velocity), instrument look angle, and attitude.

Given the expressions for the A, B, and C coefficients, the terms in the ∆F equation can
be rearranged to yield a linear equation in the attitude errors for the ith pulse of the form:

∆Fi = Ui ρ + Vi φ + Wi ψ

where ρ, φ, and ψ are the roll, pitch, and yaw attitude error angles, respectively.

The formal least-squares solution to this linear system, obtained by accumulating measurements
over several scans is:

Version 3.0 10/5/01 155

 [ρ φ ψ] = ([Ui Vi Wi]
T [Ui Vi Wi])

-1 [Ui Vi Wi]
T ∆Fi

The elements of the normal matrix [Ui V i Wi]
T [Ui V i Wi] and the measurement vector [Ui

 V i Wi]
T ∆Fi are accumulated in the Acquire Echo Track Matrix subroutine (L1B.5.3.0). Once

suff icient data has been accumulated, over at least several complete scans, the normal matrix can
be inverted and multiplied by the measurement vector to yield the attitude error estimates.

Due to the weak dependence of the echo tracking data on yaw, we can constrain the
solution to estimating only the roll and pitch by modifying the normal matrix and the
measurement vector such that:

Nij = [Ui Vi Wi]
T [Ui Vi Wi] = 0 for i = 3 or j = 3 when i ≅ j,

 = 1 for i = j = 3

M i = [Ui Vi Wi]
T ∆Fi = Σ Ui ∆Fi - yaw_bias*Σ Ui Wi for i = 1

= Σ Vi ∆Fi - yaw_bias*Σ Vi Wi for i = 2
= 0 for i = 3

The solution for roll and pitch proceeds with the inversion of the remaining 2x2 normal matrix
and the 2x1 measurement vector.

This constrained solution is recommended for normal operational processing once the
echo-tracked attitude determination is validated. It is expected that the yaw bias will be
separately determined (from a larger quantity of data) during the calibration/validation phase
post-launch.

INPUTS

 track_echo Flag that indicates whether the echo tracking option is active, and in which
mode – either the constrained 2-parameter [roll and pitch only] attitude
solution or the free 3-parameter attitude solution.

 total_echo_track_frames The actual number of telemetry frames that the Level 1B
Processor uses to calculate an echo tracked attitude.

 total_frame_time_secs The sum of the frame_time_secs measurements for all of the
telemetry frames that contribute to a single echo tracking
measurement.

 uf, vf, wf The three elements of the "measurement" column vector for the
least-squares estimator for attitude.

 uu,uv,uw, The six unique matrix elements of the least-squares estimator for
 vv,vw,ww attitude.

Version 3.0 10/5/01 156

OUTPUTS

 echo_track_attitude_struct This data structure contains two major elements,
num_attitude_recs and the Attitude structure.

CONSTANTS

 global_constants The entries in the Global Constants table are well established
physical, mathematical and astronomical constants.

 l1b_constants This table contains the run time constants required by the Level 1B
Processor.

PROCESSING

Step 1. Determine that there is sufficient contiguous data in the echo-tracking buffer to
proceed to an attitude solution.

Step 2. Check which attitude solution mode is specified (do either step 3 or step 4).

Step 3. Contrained 2-parameter (roll, pitch) attitude solution:

a) Allocate a 2x2 normal matrix and 2x1 measurement vector.
b) Fill the 2x2 matrix as follows:

N11 = uu = Σ Ui Ui
N22 = vv = Σ ViVi

N12 = N21 = uv = Σ Ui Vi

c) Fill the 2x1 measurement vector Mi as follows:

M1 = uf - yaw_bias*uw = Σ Ui ∆Fi - yaw_bias*Σ Ui Wi
M2 = vf - yaw_bias*vw = Σ Vi ∆Fi - yaw_bias*Σ Vi Wi

d) Call Determine Singularity(L1B.5.4.1) to check that the normal matrix is
invertible.

e) Call Generate_Inverse_Matrix to invert the normal matrix.
f) Multiply the inverted normal matrix by the measurement vector to generate the

estimated roll and pitch; assign the yaw value to be equal to the value of
the yaw_bias.

Step 4. Free 3-parameter (roll, pitch, yaw) attitude solution:

Version 3.0 10/5/01 157

a) Allocate a 3x3 normal matrix and 3x1 measurement vector.
b) Fill the 3x3 matrix as follows:

N11 = uu = Σ Ui Ui
N22 = vv = Σ ViVi

N33 = ww = Σ Wi Wi

N12 = N21 = uv = Σ Ui Vi
N13 = N31 = uw = Σ Ui Wi
N23 = N32 = vw = Σ Vi Wi

c) Fill the 3x1 measurement vector Mi as follows:

M1 = uf = Σ Ui ∆Fi

M2 = vf = Σ Vi ∆Fi

M3 = wf = Σ Wi ∆Fi

d) Call Determine Singularity(L1B.5.4.1) to check that the normal matrix is
invertible.

e) Call Generate_Inverse_Matrix to invert the normal matrix.

f) Multiply the inverted normal matrix by the measurement vector to generate the
estimated roll, pitch, and yaw values.

Version 3.0 10/5/01 158

SeaWinds Algorithm Specification

TITLE: Determine Singularity
SUBMODULE: Calculate Echo Track Attitude
MODULE: Track Echo Signal
CODE: L1B.5.4.1
VERSION: 1.0
AUTHOR: R. Scott Dunbar, S. Vincent Hsiao, Philip S. Callahan
SUBROUTINE: Determine_Singularity
LANGUAGE: FORTRAN 90
HERITAGE: None

L1B.5.4.1 Determine_Singularity

PURPOSE

This routine tests whether the attitude matrix accumulated in the echo tracking algorithm
is singular, by computing and testing its determinant. If the determinant is
zero (to within the machine accuracy given by e = 10-9) then the matrix is singular and does not
possess an inverse.

INPUTS

matrix An array of either 2 rows and columns (needed for the yaw-constrained
case) or 3 rows and columns (needed for the unconstrained "free"
solution).

OUTPUTS

is_singular A logical flag indicating whether the matrix is singular.

INTERNAL VARIABLES

work_matrix A 3x3 array used to compute the determinant of the input matrix. It is
initialized to zero, and the elements of the input matrix are copied to the
appropriate elements of the work_matrix. If the input matrix is a 2x2
(yaw-constrained case), the (3,3) element of the work_matrix is set to 1.

PROCESSING

Step 1. Determine the size of the input matrix (2x2 or 3x3).

Version 3.0 10/5/01 159

Step 2. Initialize the work_matrix, setting all elements to zero.

Step 3. If the input matrix is 2x2, set work_matrix(3,3) = 1.

Step 4. Copy the elements of the input matrix into the work_matrix.

Step 5. Compute the determinant of the work matrix:

 determinant = work_array(1,1)*[work_matrix(2,2)*work_matrix(3,3) -
 work_matrix(2,3)*work_matrix(3,2)]
 - work_array(2,1)*[work_matrix(1,2)*work_matrix(3,3) -
 work_matrix(1,3)*work_matrix(3,2)]
 + work_array(3,1)*[work_matrix(1,2)*work_matrix(2,3) -
 work_matrix(1,3)*work_matrix(2,2)]

Step 6. Test the value of the determinant:

if abs(determinant) > e : is_singular = .false.
else : is_singular = .true.

The value of the flag is_singular is returned to the caller to indicate whether the matrix can be
inverted or not.

COMMENTS

All computations should be done in double precision to maintain accuracy.

Version 3.0 10/5/01 160

SeaWinds Scatterometer Calibration
Smoothing Algorithm

Module L1B.6.0

ALGORITHM SPECIFICATIONS

AUTHOR: Barry H. Weiss
VERSION: 1.0
DATE: June 29, 2001

Version 3.0 10/5/01 161

SeaWinds Scatterometer Calibration Smoothing Algorithm
MODULE (L1B.6.0)

I. MODULE OVERVIEW

Under nominal operating conditions, the SeaWinds instrument acquires a calibration
sequence approximately once every 1.5 seconds. Each sequence consists of two calibration
measurements. The first measurement is a loop back calibration, where the instrument feeds the
energy from a standard pulse through attenuators to the receiver. The second is a load calibration,
where the receiver records the ambient conditions when no signal is transmitted.

The telemetry denotes where calibration pulse sequences are located in the data stream.
The Level 1A Processor locates each calibration pulse sequence. The Level 1A Processor then
checks whether each earmarked calibration displays a reasonable spectral profile for a calibration
pulse in the current resolution mode. If the calibration sequence appears to be correct, the Level
1A Processor copies the calibration pulse sequence, along with a few additional data elements
that are required to interpret the calibration data, into a record in the Calibration Pulse Product.

A series of sensitivity studies by Lou and Liu [1] indicates that the use of time averaged
calibration data can significantly reduce the error in σo estimates. Their study shows that the error
in so reduces to an acceptable level of 0.2 dB for low signal to noise ratio conditions when a time
average of 800 or more calibration values are used to estimate the bandwidth ratio of noise filter
to echo filter. The level of error in so improves significantly when the signal to noise ratio is
higher. Based on the work on Lou and Liu, the Level 1B Processor performs a time average on
all calibrations before they are applied to the energy measurements in the echo filter and the
noise filter.

Use of the Calibration Pulse Product simplifies the calibration smoothing process in the
Level 1B Processor. Acceptable time averages of calibrations require access to an adequate range
of data that both precede and follow each calibration record. Access to adequate input for the
time averages becomes problematic when records are relatively close to data granule boundaries.
To address the data boundary problem, a nominal run of the Level 1B Processor reads three
Calibration Pulse Product files. One file represents the data granule that precedes the one being
processed, the second file represents the data granule that is being processed, and the final file
represents the data granule that follows the one being processed. The Level 1B Processor
combines the data from these three files into a single buffer. This approach insures that the
calibration data are smoothed equally well over the entire input data set and that any abrupt
changes in calibration measure are detected.

Version 3.0 10/5/01 162

II. FUNCTIONAL FLOW DESCRIPTION

The design divides the algorithm into three major segments.

Initialize Calibration Pulse Buffers for Smoothing

This segment populates the data buffers that are used to calculate the time averages of the loop
back calibration and ambient load calibration. The Processor uses data in the Calibration Pulse
Product file to populate the buffers. The Level 1B Processor calls this subroutine at the very
beginning of the algorithmic process.

Apply Time Average to Calibration Pulses

This segment performs a rolling time average of the calibration pulse measurements. In the
process, the code checks for abrupt changes in calibration measurements that might signal
erroneous or undesirable instrument behavior. The code also insures that calibrations that are
acquired in differing instrument modes are not combined in the data smoothing technique. The
Level 1B Processor calls this subroutine at the very beginning of the algorithmic process.

Assign Appropriate Calibrations to Measurement Pulses

This module compares the time of transmission of each pulse against the representative times
associated with each time averaged calibration record. The module assigns the calibration that
best fits a time based criterion to each pulse. Subsequent code applies the assigned calibrations
to the echo and noise energy measurements for the pulse to calculate the corresponding
normalized radar cross section (σo). The Level 1B Processor calls this function at the beginning
of module that calculates σo values.

Version 3.0 10/5/01 163

SeaWinds Algorithm Specification

TITLE: Initialize Calibration Time Average
SUBMODULE:
MODULE: Initialize Level 1B Processing
CODE: L1B.6.1.1
VERSION: 1.0
DATE: 07/18/01
AUTHOR: Barry Weiss
SUBROUTINE: Initialize_Cal_Pulse
LANGUAGE: Fortran 90
HERITAGE: None

L1B.6.1.1 Initialize_Cal_Pulse

PURPOSE

A study by Lou and Liu [1] indicates that the use of time averaged calibrations diminishes
the error in σo estimation. This algorithm prepares the set of calibration measurements for the
implementation of a rolling time average. The number of data elements applied to each average
meets the criteria recommended by Lou and Liu.

BACKGROUND

Initialize_Cal_Pulse populates the local variables that store the data required to calculate
representative calibrations for the first pulse in the first telemetry frame of the input Level 1A
data set. These variables include (1) the index of the calibration record that best approximates
the first pulse in the first telemetry frame of the Level 1A product, (2) the indices that mark the
beginning and the end of the time span over which the time average process will take place, (3)
variables that store the sum of all of the good quality calibrations that are located within the time
span and (4) variables that store the number of good quality calibrations that contribute to the
sums in each time span. Subroutine Processing_Calibration_Data subsequently uses these
variables to track and store the input data for calibration smoothing.

The logic in Initialize_Cal_Pulse presumes that the calibration pulse data are listed in
temporal order. The Level 1A Processor logic generates the Calibration Pulse Product in
temporal order, and thus guarantees this condition.

Initialize_Cal_Pulse employs a single technique to populate the variables that are used to
smooth both calibration types. Initialize_Cal_Pulse assigns the index Imid to the first record
among the calibration data with a time that follows the transmission time of the first pulse in the
first telemetry frame of the input Level 1A data set. The logic then employs three criteria to seek
the full set of calibration data records that will be applied to the first time average calculation.

Version 3.0 10/5/01 164

First, the calibrations that contribute to each time average must center about the calibration
identified by index Imid. Second, the basis for the centering criterion is the time associated with
each calibration. Third, the process continuously identifies new data elements that will be used
to smooth the calibration until the required number of elements has been incorporated.

The number of elements required to smooth calibrations depends on the type of calibration data
being averaged. Data element Dimamb_load in the Level 1B Constants specifies the nominal
number of input entries required to smooth the load calibrations. In the current SeaWinds
implementation, Dimamb_load is 800. Data element Dimloop_back in the Level 1B Constants specifies
the nominal number of input entries required to smooth the loop back calibrations. In the current
SeaWinds implementation, Dimloop_back is 20. Both of these values are based on the
recommendations of Lou and Liu [1].

To begin the search, Initialize_Cal_Pulse increments the boundary indices outward from
the established center location.

Ibegin = Imid – 1 (1)
Iend = Imid (2)

where

Ibegin is the index of the first calibration record that will be used in the time average
Iend is the index of the last calibration record that will be used in the time average

Initialize_Cal_Pulse then calculates the time difference between the calibration measures with
index Imid and the two calibration measures with indices Ibegin and Iend.

Spanmid_to_begin= abs(Tmid - Tbegin) (3)
Spanmid_to_end = abs(Tmid – Tend) (4)

where

Tmid time of the first calibration pulse entry that follows the time of the transmission of the
first pulse in the first telemetry frame of the Level 1A Product

Tbegin time of the calibration pulse with index Ibegin

Tend time of the calibration pulse with index Iend

Spanmid_to_begintime span between the first calibration record that will be used in the time average
and the assigned midpoint calibration

Spanmid_to_end time span between the last calibration record that will be used in the time average
and the assigned midpoint calibration

Initialize_Cal_Pulse determines whether Spanmid_to_begin or Spanmid_to_end is larger.
Initialize_Cal_Pulse then expands the endpoint index for the boundary that records the smaller
time difference relative to the midpoint calibration.

Version 3.0 10/5/01 165

If Spanmid_to_begin is less than Spanmid_to_end then (5)
Ibegin = Ibegin- 1
Spanmid_to_begin= abs(Tpulse – Tbegin)

Else if Tmid_to_begin is greater than or equal to Tmid_to_end then
Iend = Iend + 1
Spanmid_to_end = abs(Tpulse – Tend)

End if

Each iteration of this process expands the count of the number of elements in the time
average. Thus, if the process is operating on load calibrations, then

Numamb_load = Numamb_load + 1 (6)

where

Numamb_load is the number of load calibrations in the time average

This process continues until the number of load calibrations, or Numamb_load, is equal to
Dimamb_load.

On the other hand, if the process is operating on loop back calibrations, then

Numloop_back,i_pol = Numloop_back,i_pol + 1 (7)

where

Numloop_back,i_pol is the number of loop back calibrations in the time average for the
specified polarization

This process continues until the number of loop back calibrations for each beam polarization, or
Numloop_back,i_pol, is equal to Dimloop_back.

Under nominal conditions, this logic insures that the time average covers approximately the same
time span before the midpoint calibration and after the midpoint calibration. The logic does not,
however, require that the number of elements that precede the midpoint calibration is equal to the
number of elements that follow the midpoint calibration.

Initialize_Cal_Pulse does adjust the inclusion of new elements into the time average if the logic
detects that the boundaries have reached the endpoints of the data provided in the Calibration
Pulse Product. Thus, if index Ibegin reaches 1 before the number of elements reaches the specified
target, Initili alize_Cal_Pulse will continue to increment Iend until the target number of elements
are included in the time average, regardless of the time difference. Likewise, if Iend reaches the
final record in the Calibration Pulse Product before the number of elements reaches the specified
target, Initialize_Cal_Pulse will continue to decrement Ibegin until the target number of elements

Version 3.0 10/5/01 166

are included in the time average, regardless of the time difference.

Once the boundaries of the set of calibrations that will contribute to the first time average
have been located, the processing for ambient load and loop back calibrations varies.

The algorithm generates a total echo energy for each load calibration pulse within the
time average boundaries by calculating the sum of the echo energy of the twelve slices in each
load calibration record. The algorithm then sums the total echo energy for every load calibration
pulse within the time average boundaries, and places that sum in data element SumE_amb_load. The
algorithm also sums the total noise measure for all of the load calibrations within the time
average boundaries. The subroutine passes this value to data element SumN_amb_load.

For loop back calibrations, the algorithm operates on the calibrations for each
polarization separately. The algorithm first sums the echo energy of the twelve slices for each of
the loop back calibrations within the time average boundaries. The process then checks whether
the distribution of loop back calibrations for each polarization is relatively smooth. The
algorithm sorts the loop back calibrations for each polarization relative to the total echo energy.
Using the ordered calibrations, the algorithm calculates the mean of those calibrations that lie in
the second and the third quartiles of the distribution. The algorithm assigns this mean to a test
calibration value, or Testi_pol.

Initialize_Cal_Pulse loops through the loop back calibrations from Ibegin to Iend once more.
 This time, the algorithm compares the relative change in value of each loop back calibration
against the test value of Testi_pol.

Net_Change = (Echoloop_back,i_pol - Testi_pol) / Testi_pol (8)

where

Echoloop_back,i_pol represents the total echo energy for each of the elements among the
set of loop back calibrations that are candidates for the first time
average calculation

Thus, if Net_Change is less than or equal to Deltaloop_back, the algorithm adds
Echoloop_back,i_pol into the summation variable SumE_loop_back,i_pol. SumE_loop_back,i_pol is the total
echo energy over all twelve slices for all of the acceptable loop back calibration pulses of the
specified polarization from index Ibegin to index Iend. Likewise, the logic adds the corresponding
loop back noise energy, or Noiseloop_back,i_pol into the summation variable SumN_loop_back,i_pol.
SumN_loop_back,i_pol is the total noise energy for all of the acceptable loop back calibration pulses of
the specified polarization from index Ibeginto index Iend.

On the other hand, if Net_Change is greater than Deltaloop_back, Initialize_Cal_Pulse does not
include Echoloop_back,i_pol in SumE_loop_back,i_pol and does not include Noiseloop_back,i_pol in
SumN_loop_back,i_pol. Initialize_Cal_Pulse also decrements the counter Numloop_back,i_pol.

Version 3.0 10/5/01 167

The current design presumes that the number load calibrations that are available for
processing always exceeds Dimamb_load. If the input data set is very small, fewer than Dimamb_load

calibrations may be available. Before the processor begins to load the buffer, the logic checks
whether the number of records in the calibration data buffer are sufficient. If the total number of
calibration records is fewer than MIN_LOAD_CAL_BUFFER, the processor halts. The nominal
value of MIN_LOAD_CAL_BUFFER is 200. If the total number of calibration records is greater
than MIN_LOAD_CAL_BUFFER and is less than Dimamb_load, the processor resets the value of
Dimamb_load to be equal to MIN_LOAD_CAL_BUFFER.

INPUTS

The algorithm reads these input parameters from the Calibration Pulse Product:

Noiseamb_load Noise energy of an ambient load scatterometer calibration
Echoamb_load Echo energy of an ambient load scatterometer calibration
Noiseloop_back,i_pol Noise energy of a loop back scatterometer calibration for the specified

beam polarization
Echoloop_back,i_pol Echo energy of a loop back scatterometer calibration for the specified

beam polarization

The algorithm acquires this input parameter from the Level 1A Product:

Tpulse The time of the transmission of the first pulse in the input data set

OUTPUTS

Numamb_load The number of load calibrations that were identified for the first time average
calculation

Numloop_back,i_pol The number of loop back calibrations that were identified for the first time
average calculation for each polarization

Imid Index of the midpoint calibration that will be used to calculate the first time average
Iamb_load_begin Index of the first load calibration that will be used to calculate the first time

average
Iamb_load_end Index of the final load calibration that will be used to calculate the first time

average
Iloop_back_begin,i_pol Index of the first loop back calibration of the specified polarization that

will be used to calculate the first time average
Iloop_back_end,i_polIndex of the final loop back calibration of the specified polarization that will be

used to calculate the first time average
Testi_pol Test value used to eliminate possible outlier values from the distribution of loop

back calibrations
SumE_amb_load The sum of the echo energy over all of the slices for all of the load calibration

pulses from index Iamb_load_begin to index Iamb_load_end.
SumN_mb_load The sum of the noise energy for all of the load calibration pulses from index

Iamb_load_begin to index Iamb_load_end.

Version 3.0 10/5/01 168

SumE_loop_back,i_pol The sum of the echo energy over all of the slices for all of the loop back
calibration pulses of the specified polarization from index Iloop_back_begin,i_pol

to index Iloop_back_end,i_pol.
SumN_loop_back,i_pol The sum of the noise energy for all of the loop back calibration pulses of

the specified polarization from index Iloop_back_begin,i_pol to index
Iloop_back_end,i_pol.

CONSTANTS

All of the following constants are stored in the Level 1B Constants Table:

Dimamb_load The prescribed number of elements to calculate a time
average of load calibrations. 800

Dimloop_back The prescribed number of elements to calculate a time
average of loop back calibrations. 20

Deltaloop_back The maximum change that should appear between a given
loop back calibration and the test calibration value. 1.2 dB

PROCESSING

Step 1: Checks whether the number of available calibrations is greater than
MIN_LOAD_CAL_BUFFER. If fewer than MIN_LOAD_CAL_BUFFER
calibrations are available, the processor exits.

Step 2: Checks whether the number of available calibrations is less than Dimamb_load. If fewer the
Dimamb_load calibrations are available, reset the value of Dimamb_load to be equal to
MIN_LOAD_CAL_BUFFER.

Step 3: Locates the first record among the input calibration pulse data that contains a time that is
later than the transmission time of the first pulse in the first telemetry frame of the input
Level 1A data set. Assigns the index Imid to that calibration pulse record.

Step 4: Expands the range of indices of the load calibrations using equations (1) and (2). Then
calculates the time span between Imid and Iamb_load_begin using equation (3). Calculates the
time span between Imid and Iamb_load_end using equation (4).

Step 5: Determines which time span is smaller. Increments the index of the boundary that
records the smaller time span relative to the midpoint calibration using the logic in (5).
Increments the number of load calibrations in the buffer using (6). Continues this process
until the number of load calibrations that extend from Iamb_load_begin to Iamb_load_end is
Dimamb_load. This count includes the records with indices Iamb_load_begin and Iamb_load_end.

Step 6: Sums the echo energy for all of the slices in all of the load calibration pulses from
Iamb_load_begin to Iamb_load_end, and places the sum in SumE_amb_load.

Version 3.0 10/5/01 169

Step 7: Sums the noise energy for all of the load calibration pulses from Iamb_load_begin to
Iamb_load_end, and places the sum in SumN_amb_load.

Step 8: Loops over both scatterometer beams. The first loop iteration processes the horizontal
polarization scatterometer beam. The second loop iteration processes the vertical
polarization scatterometer beam.

Step 9: Expands the indices of the loop back calibration buffer for the current beam using
equations (1) and (2). Then calculates the time span between Imid and Iloop_back_begin,i_pol

using equation (3) and the time span between Imid and Iloop_back_end,i_pol using equation (4).

Step 10: Determines which time span is smaller. Increments the index of the boundary that
records the smaller time span relative to the midpoint calibration using the logic in (5).
Increments the number of loop back calibrations for the appropriate beam polarization
using (7). Continues until the number of loop back calibrations from index
Iloop_back_begin,i_pol to Iloop_back_end,i_pol is equal to Dimloop_back. This count includes the records
with indices Iloop_back_begin,i_pol and Iloop_back_end,i_pol.

Step 11:Sums the echo energy for all of the slices in each of the loop back calibration pulses
from Iloop_back_begin,i_pol to Iloop_back_end,i_pol, and places each sum into an individual entry in
the array Echoloop_back,i_pol.

Step 12:Sorts all of the loop back calibrations in the array Echoloop_back,i_pol between index
Iloop_back_begin,i_pol and Iloop_back_end,i_pol in numerical order.

Step 13:Calculates the mean of the elements in the second and third quartiles of the distribution
of the loop back calibrations. Assigns that mean to Testi_pol.

Step 14:Tests each loop back calibration of the appropriate beam polarization from index
Iloop_back_begin,i_pol to Iloop_back_end,i_pol against Testi_pol using equation (8). If Net_Change is
less than or equal to Deltaloop_back, proceeds to step 14. If Net_Change is greater than
Deltaloop_back, tests the next loop back calibration in the sequence.

Step 15:Includes the sum of the echo energy for all of the slices of the loop back calibration pulse
into summation variable SumE_loop_back,i_pol for the appropriate polarization.

Step 16: Includes the noise energy of the loop back calibration pulse into the summation variable
SumN_loop_back,i_pol for the appropriate polarization.

REFERENCE

[1] Lou, S. and Liu, Y., SeaWinds/QuikSCAT High and Low Resolution On-orbit Calibration
and Noise Subtraction, Interoffice Memorandum 3347-98-019, Jet Propulsion Laboratory,
March 27, 1998.

Version 3.0 10/5/01 170

SeaWinds Algorithm Specification

TITLE: Apply Time Average to Calibration Data
SUBMODULE:
MODULE: Initialize Level 1B Processing
CODE: L1B.6.1.2
VERSION: 1.0
DATE: 07/18/01
AUTHOR: Barry Weiss
SUBROUTINE: Process_Calibration_Data
LANGUAGE: Fortran 90
HERITAGE: None

L1B.6.1.2 Process_Calibration_Data

PURPOSE

Lou and Liu [1] demonstrated that time averaging calibrations before their use
significantly reduces the noise in σo measure. This algorithm implements a rolling time average
of the instrument calibration measurements in order to meet those recommendations.

BACKGROUND

Initialize_Cal_Pulse populates the variables that are used to perform the time average of
the instrument calibrations. That function introduces a set of array indices that define the range
of the calibrations that are applied to each time average calculation. These indices include:

Iamb_load_begin Index of the first load calibration used to calculate a rolling time average
Iamb_load_end Index of the final load calibration used to calculate a rolling time average
Iloop_back_begin,i_pol Index of the first loop back calibration of the specified polarization used to

calculate a rolling time average
Iloop_back_end,i_polIndex of the final loop back calibration of the specified polarization used to

calculate a rolling time average

When Initialize_Cal_Pulse finishes processing, all of the data that are required to
calculate time averaged calibrations for the very first elements in the Level 1A Product have been
identified. The first functional steps in Process_Calibration_Data complete that process. The
following equations calculate the calibration parameters that the Level 1B Processor
subsequently uses to generate σos:

MeanE_amb_load = SumE_amb_load / Numamb_load (1)
MeanN_amb_load = SumN_amb_load / Numamb_load (2)

Version 3.0 10/5/01 171

MeanE_loop_back,i_pol = SumE_loop_back,i_pol / Numloop_back,i_pol (3)
MeanN_loop_back,i_pol = SumN_loop_back,i_pol / Numloop_back,i_pol (4)

Ttime_avg = Tmid (5)
α = (MeanN_amb_load / MeanE_amb_load)/ Ratiorcv_gain_eu (6)
Cali_pol = (a*MeanE_loop_back,i_pol-MeanN_loop_back,i_pol/Ratiorcv_gain_eu)/ (α - 1) (7)

where

MeanE_amb_load the mean of the echo energy of the load calibrations with indices that range from
Iamb_load_begin to Iamb_load_end.

MeanN_amb_load the mean of the noise energy of the load calibrations with indices that range from
Iamb_load_begin to Iamb_load_end.

MeanE_loop_back,i_pol the mean of the echo energy of the loop back calibrations for the specified
beam polarization with indices that range from Iloop_back_begin,i_pol to
Iloop_back_end,i_pol.

MeanN_loop_back,i_pol the mean of the noise energy of the loop back calibrations for the specified
beam polarization with indices that range from Iloop_back_begin,i_pol to
Iloop_back_end,i_pol.

Ttime_avg the representative time for a time averaged calibration entry.
α the bandwidth ratio
Ratiorcv_gain_eu the SeaWinds instrument receiver gain ratio in engineering units.
Cali_pol the representative calibration value for the specified beam polarization.

If no problems were detected in the calculation of these parameters, the algorithm sets the
value of the flag Calusable,i_pol for the corresponding calibration record to TRUE. If problems were
detected, the algorithm sets Calusable,i_pol to FALSE. This flag indicates to subsequent code
whether the corresponding calibration data listings ought to be used.

Finally, Process_Calibration_Data checks whether the loop back calibration with index
Iloop_back_begin,i_pol and the loop back calibration with index Imid were both acquired when the
SeaWinds instrument was operating in Wind Observation Mode. If both elements were acquired
when the instrument was in Wind Observation Mode, Process_Calibration_Data sets the flag
Calmode_consistent to TRUE. This flag is designed to locate calibrations that were acquired at the
very beginning of a Wind Observation Mode sequence. The SeaWinds instrument subsystems
power up gradually at the beginning of Wind Observation Mode. The resulting lack of steady
state conditions is likely to generate unreliable time averaged calibrations. The flag
Calmode_consistent is used in subsequent code to denote any time averaged calibrations that have
questionable value due to these conditions.

With the completion of the first time average calculation of calibration parameters,
Process_Calibration_Data begins an iterative process. Within each iteration, the algorithm
identifies the range of data that apply to the next calibration time average, and then calculates a
set of representative calibration parameters that are based on the time averaging method.

Version 3.0 10/5/01 172

The iterative process begins by modifying the first, last and midpoint data indices that
were defined in the previous time average calculation. The algorithm increments the index of
the midpoint calibration.

Imid = Imid + 1 (8)

The new midpoint provides a basis for the calculation of an entirely new set of calibration
parameters. The time of the calibration measure with index Imid is Tmid. The algorithm assigns
the time Tmid to variable Ttime_avg. Ttime_avg is the reference time that corresponds to the time
averaged calibration variables that this algorithm generates.

Process_Calibration_Data then adjusts the range of the load calibration measures for the
next time average calculation. Based on the new midpoint location, the routine recalculates the
time difference between the load calibration measure with index Imid and the two load calibration
measures with indices Iamb_load_begin and Iamb_load_end.

Spanmid_to_begin= abs(Tmid – Tamb_load_begin) (9)
Spanmid_to_end = abs(Tmid – Tamb_load_end) (10)

where

Tmid time of the calibration pulse entry that currently represents the midpoint of the time
average buffer

Tamb_load_begin time of the load calibration pulse with index Ibegin

Tamb_load_end time of the load calibration pulse with index Iend

Spanmid_to_begintime span between the load calibration with index Iamb_load_begin and the midpoint
calibration

Spanmid_to_end time span between the load calibration with index Iamb_load_end and the midpoint
calibration

Process_Calibration_Data then compares Spanmid_to_begin to Spanmid_to_end. If Spanmid_to_end is
smaller than or equal to Spanmid_to_begin, the range of input calibration measures that apply to the
time average must change. The algorithm removes the first data entry from the summation
variables since that entry now falls outside of the data range:

SumE_amb_load = SumE_amb_load – Echoamb_load(Iamb_load_begin) (11)
SumN_amb_load = SumN_amb_load - Noiseamb_load(Iamb_load_begin) (12)

where

Echoamb_load(Iamb_load_begin) The echo energy over all of the slices of the load calibration with
index Iamb_load_begin.

Noiseamb_load(Iamb_load_begin) The noise energy of the load calibration with index Iamb_load_begin.

Version 3.0 10/5/01 173

The algorithm then updates the indices of the first and last elements that apply to the
rolling time average.

Iamb_load_begin = Iamb_load_begin + 1 (13)
Iamb_load_end = Iamb_load_end + 1 (14)

Based on the new value of index Iamb_load_end, the algorithm includes the new calibration
measures that now fall within range into the sums that are used to calculate the time averages:

SumE_amb_load = SumE_amb_load + Echoamb_load(Iamb_load_end) (15)
SumN_amb_load = SumN_amb_load + Noiseamb_load(Iamb_load_end) (16)

where:

Echoamb_load(Iamb_load_end) The echo energy over all of the slices of the load calibration with
index Iamb_load_end.

Noiseamb_load(Iamb_load_end) The noise energy of the load calibration with index Iamb_load_end.

Process_Calibration_Data continues to adjust the content of the summation variables
SumE_amb_load and SumN_amb_load until Spanmid_to_end is greater than Spanmid_to_begin or until the
Iamb_load_end is the index of the final record in the calibration data buffer. When either of these
conditions is met, the algorithm calculates the mean load calibration values using equations (1)
and (2). The algorithm applies these mean load calibrations to equation (3) to calculate the
representative bandwidth ratio that is associated with time Ttime_avg.

For each time average calculation, the algorithm checks whether the load calibration with
index Iamb_load_begin and the load calibration with index Imid were both acquired when the
SeaWinds instrument was operating in Wind Observation Mode. If both elements were acquired
when the instrument was in Wind Observation Mode, Process_Calibration_Data sets the flag
Calmode_consistent to TRUE.

Process_Calibration_Data uses a slightly different method to adjust the content of the
time average sums for the loop back calibrations. The algorithm runs the logic for the loop back
calibrations through two iterations. The first iteration applies for the horizontal polarization
antenna beam. The second iteration applies for the vertical polarization antenna beam. For each
antenna beam, the routine recalculates the time difference between the loop back calibration
measure with index Imid and the two loop back calibration measures with indices Iloop_back_begin,i_pol

and Iloop_back_end,i_pol.

Spanmid_to_begin= abs(Tmid – Tloop_back_begin,i_pol) (17)
Spanmid_to_end = abs(Tmid – Tloop_back_end,i_pol) (18)

where

Tmid time of the calibration pulse entry that currently represents the midpoint of the time

Version 3.0 10/5/01 174

average buffer
Tloop_back_begin,i_pol time of the loop back calibration pulse with index Iloop_back_begin,i_pol

Tloop_back_end,i_pol time of the loop back calibration pulse with index Iloop_back_end,i_pol

Spanmid_to_begintime span between the loop back calibration with index Iloop_back_begin,i_pol and the
midpoint calibration

Spanmid_to_end time span between the loop back calibration with index Iloop_back_end,i_pol and the
midpoint calibration

The algorithm then compares Spanmid_to_begin to Spanmid_to_end. If Spanmid_to_end is smaller
than or equal to Spanmid_to_begin, the range of loop back calibration measures that apply to the time
average must change. The algorithm removes the entry from the summation variables that now
falls outside of the data range and then decrements the count of the loop back calibrations in the
buffer:

SumE_loop_back,i_pol = SumE_loop_back,i_pol – Echoloop_back,i_pol(Iloop_back_begin,i_pol) (19)
SumN_loop_back,i_pol = SumN_loop_back,i_pol – Noiseloop_back,i_pol(Iloop_back_begin,i_pol) (20)
Numloop_back,i_pol = Numloop_back,i_pol - 1 (21)

where

Echoloop_back,i_pol(Iloop_back_begin,i_pol) The echo energy over all of the slices of the loop back
calibration for the specified beam polarization with index
Iloop_back_begin,i_pol.

Noiseloop_back,i_pol(Iloop_back_begin,i_pol) The noise energy of the loop back calibration for the
specified beam polarization with index Iloop_back_begin,i_pol.

Numloop_back,i_pol The number of loop back calibrations of the specified polarization
incorporated into the summation variables that are used to
calculate time averages.

The algorithm then updates the indices of the first and last loop back calibrations that
apply to the rolling time average:

Iloop_back_begin,i_pol = Iloop_back_begin,i_pol + 1 (22)
Iloop_back_end,i_pol = Iloop_back_end,i_pol + 1 (23)

Before Process_Calibration_Data adds any new loop back calibrations into the
summation variables that are used to calculate the time average, the process checks the relative
stabilit y of the input calibration data. The algorithm calculates the net change of the candidate
calibration relative to a test value:

Net_Change = (Echoloop_back,i_pol - Testi_pol) / Testi_pol (24)

where

Echoloop_back,i_pol the sum of the echo energy of all twelve slices for the loop back

Version 3.0 10/5/01 175

calibration with the specified polarization associated with index
Iloop_back_end,i_pol.

Testi_pol the test loop back calibration value for the specified beam polarization. With the
exception of the first time average iteration, Testi_pol is equal to the mean
of the loop back calibrations from the previous iteration.
Initialize_Cal_Pulse provides the value of Testi_pol for initial iteration.

If the value of Net_Change is less than or equal to Deltaloop_back, the algorithm includes
the new loop back calibration element into the sums that are used to calculate the time average,
and then increments the count of loop back calibrations:

SumE_loop_back,i_pol = SumE_loop_back,i_pol + Echoloop_back,i_pol(Iloop_back_end,i_pol) (25)
SumN_loop_back,i_pol = SumN_loop_back,i_pol + Noiseloop_back,i_pol(Iloop_back_end,i_pol) (26)
Numloop_back,i_pol = Numloop_back,i_pol + 1 (27)

where:

Echoloop_back,i_pol(Iloop_back_end,i_pol) The echo energy over all of the slices of the loop back
calibration of the specified polarization with index
Iloop_back_end,i_pol.

Noiseloop_back,i_pol(Iloop_back_end,i_pol) The noise energy of the loop back calibration of the
specified polarization with index Iloop_back_end,i_pol.

Numloop_back,i_pol The number of loop back calibrations of the specified polarization
incorporated into the summation variables that are used to
calculate time averages.

Process_Calibration_Data continues to adjust the content of the summation variables
SumE_loop_back,i_pol and SumN_loop_back,i_pol until Spanmid_to_end is greater than Spanmid_to_begin. Once
Spanmid_to_end is greater than Spanmid_to_begin, Process_Calibration_Data employs equations (3) and
(4) to calculate the mean loop back calibration values that are representative of time Ttime_avg for
the specified polarization. Process_Calibration_Data then applies these mean values to equation
(7) to calculate the representative calibrations for each polarization for time Ttime_avg.

The algorithm then resets the value of Testi_pol to be equal to the current mean of the echo
energy of the loop back calibrations, or MeanE_loop_back,i_pol. The algorithm will use this value of
Testi_pol to test the candidate loop back calibration measures for inclusion into the summation
variables for the next time average iteration.

For each set of representative calibrations, Process_Calibration_Data signals a successful
calculation of the time averages by setting Calusable,i_pol to TRUE. If problems were detected in
the calculation of the time averages, Process_Calibration_Data sets Calusable,i_pol to FALSE.

The algorithm begins another iteration by incrementing the midpoint calibration index,
Imid. The time average iterations proceed until the index Iamb_load_end represents the last record in
the calibration data buffer.

Version 3.0 10/5/01 176

INPUTS

The algorithm reads these input parameters from the Calibration Pulse Product:

Noiseamb_load Noise energy of an ambient load scatterometer calibration
Echoamb_load Echo energy of an ambient load scatterometer calibration
Noiseloop_back,i_pol Noise energy of a loop back scatterometer calibration for the specified

beam polarization
Echoloop_back,i_pol Echo energy of a loop back scatterometer calibration for the specified

beam polarization
Tcal The time associated with the corresponding sequence of calibrations

Subroutine Initialize_Cal_Pulse determines the initial values of the following input parameters:

Numamb_load The number of load calibrations in the time average calculation
Numloop_back,i_pol The number of loop back calibrations in the time average calculation for

each polarization
Imid Index of the midpoint calibration
Iamb_load_begin Index of the first load calibration in the time average
Iamb_load_end Index of the final load calibration in the time average
Iloop_back_begin,i_pol Index of the first loop back calibration of the specified polarization in the

time average
Iloop_back_end,i_polIndex of the final loop back calibration of the specified polarization in the time

average
Testi_pol Test value used to eliminate possible outlier values from the distribution of loop

back calibrations
SumE_amb_load The sum of the echo energy over all of the slices for all of the load calibration

pulses from index Iamb_load_begin to index Iamb_load_end.
SumN_amb_load The sum of the noise energy for all of the load calibration pulses from index

Iamb_load_begin to index Iamb_load_end.
SumE_loop_back,i_pol The sum of the echo energy over all of the slices for all of the loop back

calibration pulses of the specified polarization from index Iloop_back_begin,i_pol

to index Iloop_back_end,i_pol.
SumN_loop_back,i_pol The sum of the noise energy for all of the loop back calibration pulses of

the specified polarization from index Iloop_back_begin,i_pol to index
Iloop_back_end,i_pol.

OUTPUTS

Ttime_avg the representative time associated with a set of calibration data
α the bandwidth ratio
Cali_pol a pair of smoothed, representative calibration values, one for each of the beam

polarizations
Calusable,i_pol quality flag that indicates whether the calibration associated with the

Version 3.0 10/5/01 177

corresponding time for the specified polarization is usable
Calmode_consistent flag that indicates whether the instrument mode was consistent over the time span

of the calibrations that were applied to the time average

CONSTANTS

All of the following constants are stored in the Level 1B Constants Table:

Dimamb_load The prescribed number of elements to calculate a time
average of load calibrations. 800

Dimloop_back The prescribed number of elements to calculate a time
average of loop back calibrations. 20

Deltaloop_back The maximum change that should appear between a given
loop back calibration and the test calibration value. 1.2 dB

Ratiorcv_gain_eu the SeaWinds instrument receiver gain ratio in engineering 2.917
units.

PROCESSING

Step 1: Calculate the mean load calibration and the mean loop back calibration for both beam
polarizations that apply to the first pulse in the first telemetry frame of the Level 1A
Product using equations (1), (2), (3) and (4).

Step 2: Use equations (6) and (7) to apply the mean calibrations to calculate a bandwidth ratio
and representative calibrations for the first pulse in the first telemetry frame of the Level
1A Product.

Step 3: If the time average calculation records no errors or abnormalities, set the value of the
Calusable flag for the appropriate polarization to TRUE.

Step 4: If the calibration with the index Iamb_load_begin and the calibration with index Imid were both
acquired when the SeaWinds instrument was operating in Wind Observation Mode, set
the value of the flag Calmode_consistent equal to TRUE.

Step 5: Assign the time of the record in the calibration data with index Imid to Ttime_avg. This
variable stores the representative time for each set of time averaged calibrations.

Step 6: This step marks the beginning of the rolling time average calculation. Increment the index
of the midpoint calibration in the calibration data buffer as specified in equation (8).

Step 7: Calculate the time span between Imid and Iamb_load_begin using equation (9) and the time
span between Imid and Iamb_load_end using equation (10).

Step 8: If time span Spanmid_to_end is smaller than or equal to time span Spanmid_to_begin, proceeds
to step 9. If time span Spanmid_to_end is greater than time span Spanmid_to_begin, proceeds to

Version 3.0 10/5/01 178

step 10.

Step 9: Adjust the contents of the summation variables that are used to calculate the time average
of the load calibrations. Removes the calibrations associated with index Iamb_load_begin

from the summation variables. Increments the indices Iamb_load_begin and Iamb_load_end.
Includes the calibrations associated with the new value of index Iamb_load_end into the same
summation variables.

Step 10: Calculate a new mean for the echo energy, MeanE_amb_load, and a new mean for the noise
energy, MeanN_amb_load, of the load calibrations using equations (1) and (2).

Step 11: Assign the time of the record in the calibration data buffer with index Imid to Ttime_avg.
This variable stores the representative time for each set of time averaged calibrations.

Step 12: Using equation (6), calculate a new bandwidth ratio, α, based on MeanE_amb_load and
MeanN_amb_load.

Step 13: If the calibration with the index Iamb_load_begin and the calibration with index Imid were
both acquired when the SeaWinds instrument was operating in Wind Observation Mode,
sets the value of the flag Calmode_consistent equal to TRUE.

Step 14: Loop over the two scatterometer beams. The first loop iteration applies to the horizontal
polarization beam. The second loop iteration applies to the vertical polarization beam.

Step 15: Calculate the time span between Imid and Iloop_back_begin,i_pol using equation (17) and the
time span between Imid and Iloop_back_end,i_pol using equation (18).

Step 16: If time span Spanmid_to_end is smaller than or equal to time span Spanmid_to_begin, proceeds
to step 17. If time span Spanmid_to_end is greater than time span Spanmid_to_begin, proceeds to
step 19.

Step 17:Adjusts the contents of the summation variables that are used to calculate the time
average of the loop back calibrations. Removes the calibrations associated with index
Iloop_back_begin,i_pol from the summation variables. Decrements the count of the loop back
calibrations for the specified polarization, or Numloop_back,i_pol. Increments the indices
Iloop_back_begin,i_pol and Iloop_back_end,i_pol.

Step 18:Calculate the net change in value of the loop back calibration with index Iloop_back_end,i_pol

of the specified polarization against the Testi_pol, the test loop back calibration value using
equation (24). With the exception of the first iteration of time average calculations,
Testi_pol is equal to the mean of the loop back calibrations from the previous iteration.
Initialize_Cal_Pulse determines the value of Testi_pol for the first time average
calculation.

Step 19: If the calculated net change is less than or equal to Deltaloop_back, include the loop back

Version 3.0 10/5/01 179

calibration associated with the new value of index Iloop_back_end,i_pol into the time average
summation variables. Increment Numloop_back,i_pol, the count of loop back calibrations of
the specified polarization.

Step 20: Calculate a new mean for the echo energy, MeanE_loop_back,i_pol, and the noise energy,
MeanN_loop_back,i_pol, of the loop back calibrations using equations (3) and (4).

Step 21: Reset the value of Testi_pol, the test loop back calibration value, to MeanE_loop_back,i_pol.

Step 21: Apply MeanE_loop_back,i_pol, MeanN_loop_back,i_pol and a to equation (7) to calculate
calibration measures that are representative of time Ttime_avg.

Step 22: If no errors or abnormalities were detected with the calculation of the time averaged
calibrations, set the value of the flag Calusable,i_pol to TRUE.

Step 23: If Iamb_load_end is not equal to the index of the last record in the calibration data buffer,
return to step 6 for another rolling time average iteration. If Iamb_load_end is equal to the
index of the last record in the calibration data buffer, the algorithm terminates.

REFERENCE

[1] Lou, S. and Liu, Y., SeaWinds/QuikSCAT High and Low Resolution On-orbit Calibration
and Noise Subtraction, Interoffice Memorandum 3347-98-019, Jet Propulsion Laboratory,
March 27, 1998.

Version 3.0 10/5/01 180

SeaWinds Algorithm Specification

TITLE: Locate Appropriate Calibration Record for Current Pulse
SUBMODULE:
MODULE: Calculate Sigma0 and Kp
CODE: L1B.6.1.3
VERSION: 1.0
DATE: 07/18/01
AUTHOR: Barry Weiss
SUBROUTINE: Get_Cal_Data
LANGUAGE: Fortran 90
HERITAGE: None

L1B.6.1.3 Get_Cal_Data

PURPOSE

This algorithm assigns a calibration record to each scatterometer measurement pulse. The
selection of an appropriate calibration record is based on the transmission time of the pulse, and
the time associated with each calibration.

BACKGROUND

This algorithm’s logic is based upon two criti cal assumptions. These assumptions are
that the pulse data in the Level 1A Product and that the averaged calibration data that are input
into this subroutine both appear in temporal order. The Level 1A Processor checks the temporal
order of the data, and thus insures that both of these conditions are met.

Upon the first call to Get_Cal_Data, the algorithm initializes the calibration record index,
Ical with a value of 1. On all subsequent calls to Get_Cal_Data, the algorithm employs the value
of Ical that was established at the completion of the previous call.

The algorithm compares the time of the current pulse against the time of the calibration
record with an index of Ical. If the time of the current pulse exceeds the time of the calibration
record, the code increments the index Ical, and tests the pulse time against the calibration time
identified with the new value of index Ical.

The code continues through this loop until the logic locates a calibration record with a
time that follows the time of the current pulse. The function then transfers the contents of that
calibration record to the set of output parameters.

αsel = α (1)
Calsel,h_pol = Calh_pol (2)
Calsel,v_pol = Calv_pol (3)

Version 3.0 10/5/01 181

Usablei_pol = Calusable,i_pol (4)
Modecons = Calmode_consistent (5)

The Level 1B Processor does not generate σos for those measurement pulses that Get_Cal_Data
associates with bad calibrations or with calibrations that are based on values from inconsistent
instrument modes.

INPUTS

The Level 1B Processor calculates the following input parameter in subroutine
Compute_Cell_Geometry:

Tpulse The time of the transmission of the each measurement pulse

Subroutine Process_Calibration_Data generates a series of calibration records, each of the which
contain the following data components:

Ttime_avg the representative time associated with each set of calibration data
a the bandwidth ratio
Cali_pol a pair of smoothed, representative calibration values for each polarization
Calusable,i_pol quality flag that indicates whether the calibration associated with the

corresponding time for the specified polarization is usable
Calmode_consistent flag that indicates whether the instrument mode was consistent over the

time span of the calibrations that were applied to the time average

OUTPUTS

αsel the selected bandwidth ratio
Calsel,h_pol the selected calibration value for a horizontal polarization pulse
Calsel,v_pol the selected calibration value for a vertical polarization pulse
Usablei_pol quality flag that indicates whether the selected calibration for the specified

polarization is usable
Modecons flag that indicates whether the instrument mode was consistent over the

span of the time average for the selected calibration

PROCESSING

Step 1: On the first call to this subroutine, initialize the index of the calibration record, Ical to 1.
On all subsequent calls to this subroutine, Ical retains the index value identified with the
pulse of the previous call.

Step 2: Test the time of the pulse against the time of the calibration record with an index of Ical.
If the time of the calibration with index Ical precedes the time of the pulse, proceed to step
3. If the time of the calibration index is the same as or follows the time of the pulse,
proceed to step 4.

Version 3.0 10/5/01 182

Step 3: Increment the value of Ical and returns to step 2.

Step 4: Use equations (1), (2), (3), (4) and (5) to assign the values from the calibration record
with index Ical to the subroutine output parameters. Exit the subroutine.

